Connections on modules over singularities
Researchers
- Eivind Eriksen, Eivind.Eriksen at bi.no
- Trond Stølen Gustavsen, Trond.Gustavsen at usn.no
Papers
- Equivariant Lie-Rinehart cohomology (Eriksen, Gustavsen) - [Proc. Estonian Acad. Sci. Phys. Math.
- Lie-Rinehart cohomology and integrable connections on modules of rank one (Eriksen, Gustavsen) - [J. Algebra 322 (2009), no. 12, 4283-4294]
- Connections on modules over singularities of finite and tame CM representation type (Eriksen, Gustavsen) - [Generalized Lie Theory in Mathematics, Physics and Beyond, 99-108, Springer, 2008]
- Connections on modules over quasi-homogeneous plane curves (Eriksen) - [Comm. Algebra, 36 (2008), no. 8, 3032 - 3041]
- Connections on modules over singularities of finite CM representation type (Eriksen, Gustavsen) - [J. Pure Appl. Algebra 212 (2008), no. 7, pp. 1561-1574] / Extended preprint version
- Computing obstructions for existence of connections on modules (Eriksen, Gustavsen) - [J. Symb. Comput. 42 (2007), no. 3, pp. 313-323]
Libraries
- The Singular library connections.lib (Version 1.24, 26/05 2008) for calculations of connections on modules.
- News in v1.24: Name of library changed to connections.lib,
new
procedures for curvature/integrability, minor corrections. Internal
procedures no longer static.
- News in v1.20: New procedure Conn to compute a (V-) connection of a module, some minor corrections.
- News in v1.12: Only minor changes of notation
- News in v1.11: Only minor changes of notation
- News in v1.10: Corrected and updated version of the procedure AClass(formerly called KSClass), which calculates the Atiyah class of a module.
Example scripts
- Simple zero-dimensional singularities:
- The singularity An: simple-an-dim0.sing
- Simple curve singularities:
- The singularity An: simple-aneven-dim1.sing
- simple-anodd-dim1.sing
- The singularity Dn: simple-dnodd-dim1.sing
- simple-dneven-dim1.sing
- The singularity E6: simple-e6-dim1.sing
- The singularity E7: simple-e7-dim1.sing
- The singularity E8: simple-e8-dim1.sing
- Non-Gorenstein curve singularities of finite CM type::
- The singularity k[[t3,t4,t5]]: monomial-345.sing
- The singularity k[[t3,t5,t7]]: monomial-357.sing
- The singularity k[[x,y,z]]/(x2-yn,xz,yz):
dsnodd-dim1.sing
- The singularity k[[x,y,z]]/(x3-y4,xz-y2, y2z-x2,yz2-xy): e7s-dim1.sing
- The singularity k[[x,y,z]]/(x2-xyn/2,xz,yz):
dsneven-dim1.sing
- Simple surface singularities:
- The singularity An: simple-an-dim2.sing
- Simple threefold singularities:
- The singularity An: simple-aneven-dim3.sing
- simple-anodd-dim3.sing
- The singularity Dn: simple-dnodd-dim3.sing
- simple-dneven-dim3.sing
- The singularity E6: simple-e6-dim3.sing
- The singularity E7: simple-e7-dim3.sing
- The singularity E8: simple-e8-dim3.sing
- Non-Gorenstein threefold singularities of finite CM type:
- The threefold quotient singularityof finite CM type: quotient-dim3.sing
- The threefold scroll of type (1,2): scroll-21-dim3.sing
- Simple fourfold singularities:
- The singularity An: simple-an-dim4.sing
- Some singularities which are not of finite CM type:
- The monomical curve singularity k[[t4,t5,t6,t7]]: monomial-4567.sing
- The cubic surface singularity k[[x,y,z]]/(x3 + y3 + z3): cubic-dim2.sing
- An example of a connection with non-zero curvature:
- A non-graded connection on the cubic surface singularity
k[[x,y,z]]/(x3 + y3
+ z3): cubic-curv.sing