Mock Exam	Mock Midterm exam in GRA 6035 Mathematics
Date	Fri October 4th, 2024 at 1000 - 1100

This exam consists of 8 problems with score 0 - 3p each, and maximal score on this exam is 24p. You must give reasons for your answers.

Question 1.

Determine the rank of the matrix A:

	(1)	2	3	1
A =	2	3	5	2
	$\setminus 4$	6	10	6/

Question 2.

Find a base of span($\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4$):

$$\mathbf{v}_1 = \begin{pmatrix} 1\\2\\4 \end{pmatrix}, \quad \mathbf{v}_2 = \begin{pmatrix} 2\\3\\6 \end{pmatrix}, \quad \mathbf{v}_3 = \begin{pmatrix} 3\\5\\10 \end{pmatrix}, \quad \mathbf{v}_4 = \begin{pmatrix} 1\\2\\6 \end{pmatrix}$$

Question 3.

Determine all values of t such that \mathbf{v}_1 is in span $(\mathbf{v}_2, \mathbf{v}_3)$:

$$\mathbf{v}_1 = \begin{pmatrix} 1\\2\\1 \end{pmatrix}, \quad \mathbf{v}_2 = \begin{pmatrix} 2\\t\\1 \end{pmatrix}, \quad \mathbf{v}_3 = \begin{pmatrix} t\\8\\-2 \end{pmatrix}$$

Question 4.

Determine the equilibrium state of the Markov chain with transition matrix A, if it exists:

$$A = \begin{pmatrix} 0.52 & 0.16\\ 0.48 & 0.84 \end{pmatrix}$$

Question 5.

Determine all values of s such that A is diagonalizable:

$$A = \begin{pmatrix} 1 & s & 1 \\ 0 & 1 & s \\ 0 & 0 & 2 \end{pmatrix}$$

Question 6.

Determine the definiteness of the quadratic form $f(x, y, z) = x^2 + 4xy + 6xz + 3y^2 - 10yz + 8z^2$.

Question 7.

Find the range of $f(\mathbf{x}) = \mathbf{x}^T A \mathbf{x} + B \mathbf{x}$ when

$$A = \begin{pmatrix} 3 & 2 & -2 \\ 2 & 4 & 0 \\ -2 & 0 & 7 \end{pmatrix}, \quad B = \begin{pmatrix} -6 & 4 & -2 \end{pmatrix}$$

Question 8.

Show that \mathbf{v} is an eigenvector of A, and use this to find all the eigenvalues of A:

$$A = \begin{pmatrix} 3 & 2 & -2 \\ 2 & 4 & 0 \\ -2 & 0 & 7 \end{pmatrix}, \quad \mathbf{v} = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$$