Solutions Final exam in GRA 6035 Mathematics
Date January 10th 2025 at 0900 - 1400

Question 1.

(a)

We use superposition to solve the first order difference equation y;+1 — 2y, = 200. To find the
homogeneous solution, we solve the characteristic equation r — 2 = 0, which gives » = 2 and
yP = C - 2. To find a particular solution, we set y; = A since 200 is constant. This gives
A —2A =200, or A= —200. Therefore the particular solution is y¥ = —200, and the general
solution of the difference equation is 1 = y' +yf = C - 2! — 200.

The quadratic form f(z,y, z) = 2% — 2z + yz has symmetric matrix

10 -1/2
A= o 0o 1,2
~1/2 1/2 0

The leading principal minors Dy =1, Dy =0, and D3 = 1(—1/4) — 1/2(0) = —1/4. Since D
is positive and Dj3 is negative, the quadratic form is indefinite.
The autonomous differential equation 3y’ = y(1 — y?) has equilibrium states given by 3’ = 0,
or Fy) = y(1 —9?) = y(1 —y)(1 +y) = 0, and this gives y. = —1,0,1. To determine
their stability, we compute F'(y) = (y — y?)’ = 1 — 3y? at the equilibrium states .. Since
F'(+£1) = =2 < 0 and F'(0) = 1 > 0, we conclude that the stable equilibrium states are y. = 1
and y. = —1.
The matrix A is upper triangular, and therefore has three eigenvalues (counted with multi-
plicity) equal to the diagonal entries A = 1 and A\ = 2 (with multiplicity two). Therefore A
is diagonalizable if and only if dim Fy = 2. Since dim Fy = 3 — rk(A — 2I) = 2 if and only if
rk(A — 2T) = 1, we consider
-1 s
A=-2I=(0 O
0 0 0

This is an echelon form, and it has rank one if and only if s = 0. We conclude that A is
diagonalizable if and only if s = 0.
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Question 2.

(a)

The trace of A is tr(A) = 242+ 2 = 6, and we find the determinant of A using cofactor
expansion along the first row:
2 1 -1
det(A)=|1 2 —1]=24-1)—12-1)+(-1)(-1+2)=6-1-1=4
-1 -1 2
This gives tr(A) = 6 and det(A) = 4.
To find the characteristic equation of A, we use that tr(A) = 6 and det(A) = 4, and compute

_2 Y,z 2 -1
2711 o/ T|-1 2 1 2

It follows that the characteristic equation is —A\3 + 6A? — 9\ + 4 = 0. Alternatively, we could

find the characteristic equation of A by computing |A — AI| using cofactor expansion:
2—A 1 -1
I 2=X 1 ][=02-0(2- N -1)-12-A-1)+(-1)(-1+2-N)
—1 -1 2-2A
=2-NA\—4r+3) =21 =) = =N +612 -9\ +4
We see that when we substitute A = 1, A = 2, and A = 4 in the expression on the left-hand
side of the characteristic equation, we get

—1346-12-9-14+4=0, —-2246-22-9.244=2, —4346-42-9.-44+4=0

‘:3+3+3:9

We conclude that A =1 and A = 4 are eigenvalues of A, but A = 2 is not an eigenvalue of A.
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(d)

We claim that the symmetric matrix A is positive definite: One way to see this is by computing
all eigenvalues of A: Since A = 1 and A = 4 are eigenvalues by Question 2(b), the third
eigenvalue is given by 1 +4 + XA = tr(4) = 6, or A = 1. Since A has three positive eigenvalues
A = XA =1 and A3 = 4, it is positive definite. Alternatively, we could compute the leading
principal minors of A: Since D; = 2, Dy =4 —1 = 3 and D3 = |A| = 4 are positive, A is
positive definite. Using that f is a quadratic form, with (0,0,0) as a stationary point, and
that f is positive definite and therefore convex, it follows that the origin is a global minimum
point with value f(0,0,0) = 0. The range of f is V; = [0,00) since f(,0,0) = 222 — 0o as
T — 00.

Since f(x,0,0) = 222 > 8 for 22 > 4, we have that (2,0,0) is in D for > 2 and z < —2.
This means that D is not bounded, and therefore D is not compact.

Question 3.

(a)

The quadratic form f(z,y,z) = xy — xz — yz has symmetric matrix

0 1/2 -1/2
A=|[12 0 -1/2
~1/2 -1/2 0

Since the leading principal minor Dy = —1/4 < 0, the quadratic form is indefinite, and this
implies that any stationary points of u is a saddle point. Hence u has no (local or global) max
or min, and the range of w is given by V,, = R = (—o0,00). Alternatively, we could use the
fact that f(z,1,0) = x — +oo when  — +00o to show this.

Since the range of u is R = (—o00,00), we consider the outer function f(u) = e* + e " as a
function in one variable u with domain of definition Dy = R = (—00, 00). Its first and second
derivatives are given by

flluy=e"+e ™ - (=1)=¢e"—e™, f'u)y=e"—e " (=1)=¢e"+e "

We find the stationary points by solving the first order condition f’(u) = e* — e~ = 0, which
gives e = e™", or u = —u. Hence 2u = 0, and u = 0 is the stationary point of f. Since
f"(u) > 0 for all u, f is a convex function, and u = 0 is the global minimum point of f.
Clearly f has no maximum since f(u) = e* + e " — oo when u — +o0o. We conclude that f
has a minimum value fu,i, = f(0) = e? + e =2 and no maximum value.

Question 4.

(a)

We solve the differential equation y” — 7y’ — 8y = 1 — 6t — 8t using superposition. Since the
characteristic equation is 72 — 7r — 8 = (r — 8)(r + 1) = 0, with characterististic roots r = 8
and r = —1, the homogeneous solution is 1, = C; €8 + Cye~t. To find a particular solution,
we substitute y = At? + Bt + C into the differential equation. This gives 3/ = 2At + B and
y’ = 2A, and the left-hand side of the differential equation becomes

(24) — 7(2At + B) — 8(At? + Bt + C) = (—8A)t> 4+ (—14A — 8B)t + (2A — 7B — 8C)
Comparing coefficients, we find that —84 = —8, —144 — 8B = —6, and 24 — 7B —8C = 1.
This gives A =1, -8B =14(1) —6 =8 or B = —1, and —8C = —2(1)+ 7(-1)+1 = —8 or
C = 1. Hence y, = t? —t+41 is a particular solution, and the general solution of the differential
equation is y = yp, +yp, = C1 ¥ + Coe ™t +12 —t + 1.

The differential equation 4t?y3y’ = 1 is separable, and we separate the variables by dividing
the equation with t? before we integrate both sides:

1 1

The initial condition y(1) = 1 gives 1* = —1/1 + C, or C = 2. We solve for y to get y =
+4/2 — 1/t, and notice that only the positive solution satisfies the initial condition y(1) = 1.
We conclude that the solution is



(c) The differential equation 2y — 3t2+2(¢ + 1)y’ = 0 can be written in the form p+¢-y' = 0, and
we try to solve it as an exact differential equation by finding a function h = h(¢,y) such that

hy =2y —3t%, hy=2(t+1)=2t+2
The first condition gives h = 2yt — t3 + C(y), and when we substitute this expression into the
second condition, it becomes hj, = 2t + C’(y) = 2t + 2. This means that C'(y) = 2, and we
find the solution C(y) = 2y. Hence the differential equation is exact with general solution
O+
Y= 942
(d) The matrix A has eigenvalues \; = Ay = 1 and A\3 = 4 from Question 2(c). Since A is

symmetric and therefore diagonalizable, we know that we have a base {vi,va} of E; and a
base {v3} of E4. We compute these base vectors using Gaussian elimination:

hty)=2yt—t2+2y=C = y@2t+2)=C+t =

1 1 -1 11 -1
by 1 1 -1} =10 0 O
-1 -1 1 00 O
-2 1 -1 1 -2 -1 1 -2 -1 1 -2 -1
By 1 -2 -1|-(-2 1 -1 =10 -3 -3] - |0 -3 =3
-1 -1 =2 -1 -1 -2 0 -3 -3 0 0 O

In E7 we see that t4+y—2 =0, or x = —y+ z with y, z free. We may therefore choose the base
vectors vi = (—1,1,0) and vo = (1,0,1) of Ey. In E4 we see that —3y — 3z =0, or y = —z,
and x — 2y — 2z =0, or x = 2(—2) + z = —z, with z free. We may therefore choose the base
vector vy = (—1,—1,1) of E4. This gives

—1 1 -1
yt:Clvl-1t+Cng-1t+03V3-4t:Cl 1 +C |0 +C5 [ —1 4t
0 1 1

Question 5.
(a) We notice that objective function f(z,y, z) = #? — 2y + 22 is a quadratic form with symmetric
matrix A, and that the function g(z,y, z) = y? — yz + 2?2 defining the constraint is a quadratic
form with symmetric matrix D, where A and D are given by

1 —1/2 1/2 0 0 0
A=|-12 0o o |, D=(0o 1 -1/2
/2 0 0 0 —-1/2 1

We rewrite the Kuhn-Tucker problem to one in standard form, which can be stated as
max — f(x) = —x? Ax when g(x) = x? Dx < 12

It has Lagrangian L£(z,y, z;\) = —x! Ax — A\(x? Dx — 12) when we write it in matrix form,
and the first order conditions are —2Ax — A(2Dx) = 0, or 2(A + AD)x = 0 after multiplying
the equation with —1. The constraint is x’ Dx < 12 in matrix form, and the CSC’s are
A>0and A = 0 if x”’ Dx < 12. Alternatively, you could write the first order conditions as
(A4+)AD)x = 0 (dividing the equation by 2). Alternatively, one could specify the Kuhn-Tucker
conditions without using matrices (see below).

(b) The first order conditions give a homogeneous 3 x 3 linear system with parameter \, and we
have that [2(A + AD)| = 0 or x = 0. If x = 0 then x! Dx = 0 < 12 is non-binding, and
A = 0. This gives the candidate point (0,0,0;0) with —f(0,0,0) = 0. Otherwise, we have
|2(A+ AD)| =0, and to find candidate points in this case we solve the equation

2 -1 1
2(A+AD)| = |-1 2x —Al=0
1 =X 2)

Using cofactor expansion along the first row, this gives
12(A 4 AD)| = 2(4X% = \3) — (=1)(=2XA + \) + 1(A — 2))
=6A2 4 (=N + (=A) =6A2 =22 =2A(3A —1) =0
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This means that A =0 or A = 1/3. In case A = 0, we have the first order conditions

2t —y+2=0, —x=0, z=0
which gives = 0 and y = z, and the constraint gives 22 — 22 4+ 22 = 22 < 12. This gives the
candidate points (0, z, z;0) with 22 < 12 and —f(0, z,z) = 0. Finally, in case A\ = 1/3, then
y? —yz + 22 = 12 is binding by the CSC (since A > 0), and we solve the first order conditions
with A = 1/3 using Gaussian elimination:

2 -1 1 2 -1 1 2 -1 1

1 2/3 -1/3] = [0 1/6 16| - |0 1 1

1 -1/3 2/3 0 1/6 1/6 0 0 0
Hence z is free, y + 2 =0, or y = —z, and 2z —y + 2z = 0, or 2z = (—z) — z = —2z, which
gives ¥ = —z. The constraint then gives (—2)% — (—2)z + 22 = 322 = 12, or 22 = 4. Hence

z =2 or z = —2, and we find the candidate points (—2,—-2,2;1/3) and (2,2, —-2;1/3) with
—f(2,2,-2) = —(4—4+(—4)) = 4 and —f(—2,-2,2) = —(4 — 4+ (—4)) = 4. The two
candidate points with A = 1/3 are therefore the best candidates for maximum of — f, and we
use the SOC to test if they are maxima: The function h(x) = £(x;1/3) = —xT Ax—1/3-xT DX
has Hessian matrix

B R |
H(h)=-2A-2/3-D=|(1 -2/3 1/3
-1 1/3 -2/3

The leading principal minors of H(h) are D; = —2, Dy =4/3 —1 = 1/3 and D3 = 0 (since
the Gaussian process above shows that —H (h) has rank two). By the RRC, it follows that
H(h) is negative semidefinite, and it follows that h is concave. By the SOC, this means that
— fmax = 4, or the fni, = —4 in the original Kuhn-Tucker problem, with minimum points
(—=2,—2,2) and (2,2, —2) where the Lagrange multiplier A = 1/3.
Alternatively, we could find candidate points without using matrices: We write the Lagrangian
as L(z,y,2;\) = —2? + xy — vz — M(y? — yz + 22 — 12), and the first order conditions are

L=-2r+y—2z=0

L,=r—-X2y—2)=0

L,=-2-AN-y+22)=0
Adding the last two equations, we get —A(y + z) = 0. If A > 0, this gives y = —z. When we
substitute y = —z in the FOC’s, we get x = —z in the first equation, and A = 1/3 from the last
two equations (since z = 0 gives the point (0,0,0) where the constraint is not binding, which
contradicts A > 0). Binding constraint gives y? — yz + 22 = (=2)? — (—2)z + 22 = 322 = 12,
or 22 =4 and z = +2. We obtain the two candidate points with A\ > 0:

($7 Y, z; >‘) = (_Za _27 2; 1/3)7 (27 2> _2; 1/3)

To show that these candidate points are maximum points in the Kuhn-Tucker problem in

standard form, or minimum points in the original problem, we use the SOC in the same way
as before (see above).



