
Solutions Final exam in GRA 6035 Mathematics
Date January 10th 2025 at 0900 - 1400

Question 1.

(a) We use superposition to solve the first order difference equation yt+1 − 2yt = 200. To find the
homogeneous solution, we solve the characteristic equation r − 2 = 0, which gives r = 2 and
yht = C · 2t. To find a particular solution, we set yt = A since 200 is constant. This gives
A− 2A = 200, or A = −200. Therefore the particular solution is ypt = −200, and the general
solution of the difference equation is yt = yht + ypt = C · 2t − 200.

(b) The quadratic form f(x, y, z) = x2 − xz + yz has symmetric matrix

A =

 1 0 −1/2
0 0 1/2

−1/2 1/2 0


The leading principal minors D1 = 1, D2 = 0, and D3 = 1(−1/4)− 1/2(0) = −1/4. Since D1

is positive and D3 is negative, the quadratic form is indefinite.
(c) The autonomous differential equation y′ = y(1 − y2) has equilibrium states given by y′ = 0,

or F (y) = y(1 − y2) = y(1 − y)(1 + y) = 0, and this gives ye = −1, 0, 1. To determine
their stability, we compute F ′(y) = (y − y3)′ = 1 − 3y2 at the equilibrium states ye. Since
F ′(±1) = −2 < 0 and F ′(0) = 1 > 0, we conclude that the stable equilibrium states are ye = 1
and ye = −1.

(d) The matrix A is upper triangular, and therefore has three eigenvalues (counted with multi-
plicity) equal to the diagonal entries λ = 1 and λ = 2 (with multiplicity two). Therefore A
is diagonalizable if and only if dimE2 = 2. Since dimE2 = 3 − rk(A − 2I) = 2 if and only if
rk(A− 2I) = 1, we consider

A− 2I =

−1 s 1
0 0 s
0 0 0


This is an echelon form, and it has rank one if and only if s = 0. We conclude that A is
diagonalizable if and only if s = 0.

Question 2.

(a) The trace of A is tr(A) = 2 + 2 + 2 = 6, and we find the determinant of A using cofactor
expansion along the first row:

det(A) =

∣∣∣∣∣∣
2 1 −1
1 2 −1
−1 −1 2

∣∣∣∣∣∣ = 2(4− 1)− 1(2− 1) + (−1)(−1 + 2) = 6− 1− 1 = 4

This gives tr(A) = 6 and det(A) = 4.
(b) To find the characteristic equation of A, we use that tr(A) = 6 and det(A) = 4, and compute

c2 =

∣∣∣∣2 1
1 2

∣∣∣∣+ ∣∣∣∣ 2 −1
−1 2

∣∣∣∣+ ∣∣∣∣ 2 −1
−1 2

∣∣∣∣ = 3 + 3 + 3 = 9

It follows that the characteristic equation is −λ3 + 6λ2 − 9λ+ 4 = 0. Alternatively, we could
find the characteristic equation of A by computing |A− λI| using cofactor expansion:∣∣∣∣∣∣

2− λ 1 −1
1 2− λ −1
−1 −1 2− λ

∣∣∣∣∣∣ = (2− λ)((2− λ)2 − 1)− 1(2− λ− 1) + (−1)(−1 + 2− λ)

= (2− λ)(λ2 − 4λ+ 3)− 2(1− λ) = −λ3 + 6λ2 − 9λ+ 4

We see that when we substitute λ = 1, λ = 2, and λ = 4 in the expression on the left-hand
side of the characteristic equation, we get

−13 + 6 · 12 − 9 · 1 + 4 = 0, −23 + 6 · 22 − 9 · 2 + 4 = 2, −43 + 6 · 42 − 9 · 4 + 4 = 0

We conclude that λ = 1 and λ = 4 are eigenvalues of A, but λ = 2 is not an eigenvalue of A.
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(c) We claim that the symmetric matrix A is positive definite: One way to see this is by computing
all eigenvalues of A: Since λ = 1 and λ = 4 are eigenvalues by Question 2(b), the third
eigenvalue is given by 1 + 4 + λ = tr(A) = 6, or λ = 1. Since A has three positive eigenvalues
λ1 = λ2 = 1 and λ3 = 4, it is positive definite. Alternatively, we could compute the leading
principal minors of A: Since D1 = 2, D2 = 4 − 1 = 3 and D3 = |A| = 4 are positive, A is
positive definite. Using that f is a quadratic form, with (0, 0, 0) as a stationary point, and
that f is positive definite and therefore convex, it follows that the origin is a global minimum
point with value f(0, 0, 0) = 0. The range of f is Vf = [0,∞) since f(x, 0, 0) = 2x2 → ∞ as
x → ∞.

(d) Since f(x, 0, 0) = 2x2 ≥ 8 for x2 ≥ 4, we have that (x, 0, 0) is in D for x ≥ 2 and x ≤ −2.
This means that D is not bounded, and therefore D is not compact.

Question 3.

(a) The quadratic form f(x, y, z) = xy − xz − yz has symmetric matrix

A =

 0 1/2 −1/2
1/2 0 −1/2
−1/2 −1/2 0


Since the leading principal minor D2 = −1/4 < 0, the quadratic form is indefinite, and this
implies that any stationary points of u is a saddle point. Hence u has no (local or global) max
or min, and the range of u is given by Vu = R = (−∞,∞). Alternatively, we could use the
fact that f(x, 1, 0) = x → ±∞ when x → ±∞ to show this.

(b) Since the range of u is R = (−∞,∞), we consider the outer function f(u) = eu + e−u as a
function in one variable u with domain of definition Df = R = (−∞,∞). Its first and second
derivatives are given by

f ′(u) = eu + e−u · (−1) = eu − e−u, f ′′(u) = eu − e−u · (−1) = eu + e−u

We find the stationary points by solving the first order condition f ′(u) = eu − e−u = 0, which
gives eu = e−u, or u = −u. Hence 2u = 0, and u = 0 is the stationary point of f . Since
f ′′(u) > 0 for all u, f is a convex function, and u = 0 is the global minimum point of f .
Clearly f has no maximum since f(u) = eu + e−u → ∞ when u → ±∞. We conclude that f
has a minimum value fmin = f(0) = e0 + e−0 = 2, and no maximum value.

Question 4.

(a) We solve the differential equation y′′ − 7y′ − 8y = 1− 6t− 8t2 using superposition. Since the
characteristic equation is r2 − 7r − 8 = (r − 8)(r + 1) = 0, with characterististic roots r = 8
and r = −1, the homogeneous solution is yh = C1 e

8t + C2 e
−t. To find a particular solution,

we substitute y = At2 + Bt + C into the differential equation. This gives y′ = 2At + B and
y′′ = 2A, and the left-hand side of the differential equation becomes

(2A)− 7(2At+B)− 8(At2 +Bt+ C) = (−8A)t2 + (−14A− 8B)t+ (2A− 7B − 8C)

Comparing coefficients, we find that −8A = −8, −14A − 8B = −6, and 2A − 7B − 8C = 1.
This gives A = 1, −8B = 14(1) − 6 = 8 or B = −1, and −8C = −2(1) + 7(−1) + 1 = −8 or
C = 1. Hence yp = t2−t+1 is a particular solution, and the general solution of the differential
equation is y = yh + yp = C1 e

8t + C2 e
−t + t2 − t+ 1.

(b) The differential equation 4t2y3y′ = 1 is separable, and we separate the variables by dividing
the equation with t2 before we integrate both sides:

4y3 · y′ = 1

t2
⇒

∫
4y3 dy =

∫
t−2 dt ⇒ y4 = −t−1 + C = −1

t
+ C

The initial condition y(1) = 1 gives 14 = −1/1 + C, or C = 2. We solve for y to get y =

± 4
√

2− 1/t, and notice that only the positive solution satisfies the initial condition y(1) = 1.
We conclude that the solution is

y =
4

√
2− 1

t
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(c) The differential equation 2y−3t2+2(t+1)y′ = 0 can be written in the form p+ q ·y′ = 0, and
we try to solve it as an exact differential equation by finding a function h = h(t, y) such that

h′t = 2y − 3t2, h′y = 2(t+ 1) = 2t+ 2

The first condition gives h = 2yt− t3 +C(y), and when we substitute this expression into the
second condition, it becomes h′y = 2t + C ′(y) = 2t + 2. This means that C ′(y) = 2, and we
find the solution C(y) = 2y. Hence the differential equation is exact with general solution

h(t, y) = 2yt− t3 + 2y = C ⇒ y(2t+ 2) = C + t3 ⇒ y =
C + t3

2t+ 2

(d) The matrix A has eigenvalues λ1 = λ2 = 1 and λ3 = 4 from Question 2(c). Since A is
symmetric and therefore diagonalizable, we know that we have a base {v1,v2} of E1 and a
base {v3} of E4. We compute these base vectors using Gaussian elimination:

E1 :

 1 1 −1
1 1 −1
−1 −1 1

 →

1 1 −1
0 0 0
0 0 0


E4 :

−2 1 −1
1 −2 −1
−1 −1 −2

 →

 1 −2 −1
−2 1 −1
−1 −1 −2

 →

1 −2 −1
0 −3 −3
0 −3 −3

 →

1 −2 −1
0 −3 −3
0 0 0


In E1 we see that x+y−z = 0, or x = −y+z with y, z free. We may therefore choose the base
vectors v1 = (−1, 1, 0) and v2 = (1, 0, 1) of E1. In E4 we see that −3y − 3z = 0, or y = −z,
and x − 2y − z = 0, or x = 2(−z) + z = −z, with z free. We may therefore choose the base
vector v3 = (−1,−1, 1) of E4. This gives

yt = C1 v1 · 1t + C2 v2 · 1t + C3 v3 · 4t = C1

−1
1
0

+ C2

1
0
1

+ C3

−1
−1
1

 · 4t

Question 5.

(a) We notice that objective function f(x, y, z) = x2−xy+xz is a quadratic form with symmetric
matrix A, and that the function g(x, y, z) = y2− yz+ z2 defining the constraint is a quadratic
form with symmetric matrix D, where A and D are given by

A =

 1 −1/2 1/2
−1/2 0 0
1/2 0 0

 , D =

0 0 0
0 1 −1/2
0 −1/2 1


We rewrite the Kuhn-Tucker problem to one in standard form, which can be stated as

max−f(x) = −xTAx when g(x) = xTDx ≤ 12

It has Lagrangian L(x, y, z;λ) = −xTAx − λ(xTDx − 12) when we write it in matrix form,
and the first order conditions are −2Ax− λ(2Dx) = 0, or 2(A+ λD)x = 0 after multiplying
the equation with −1. The constraint is xTDx ≤ 12 in matrix form, and the CSC’s are
λ ≥ 0 and λ = 0 if xTDx < 12. Alternatively, you could write the first order conditions as
(A+λD)x = 0 (dividing the equation by 2). Alternatively, one could specify the Kuhn-Tucker
conditions without using matrices (see below).

(b) The first order conditions give a homogeneous 3× 3 linear system with parameter λ, and we
have that |2(A + λD)| = 0 or x = 0. If x = 0 then xTDx = 0 < 12 is non-binding, and
λ = 0. This gives the candidate point (0, 0, 0; 0) with −f(0, 0, 0) = 0. Otherwise, we have
|2(A+ λD)| = 0, and to find candidate points in this case we solve the equation

|2(A+ λD)| =

∣∣∣∣∣∣
2 −1 1
−1 2λ −λ
1 −λ 2λ

∣∣∣∣∣∣ = 0

Using cofactor expansion along the first row, this gives

|2(A+ λD)| = 2(4λ2 − λ2)− (−1)(−2λ+ λ) + 1(λ− 2λ)

= 6λ2 + (−λ) + (−λ) = 6λ2 − 2λ = 2λ(3λ− 1) = 0
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This means that λ = 0 or λ = 1/3. In case λ = 0, we have the first order conditions

2x− y + z = 0, −x = 0, x = 0

which gives x = 0 and y = z, and the constraint gives z2 − z2 + z2 = z2 ≤ 12. This gives the
candidate points (0, z, z; 0) with z2 ≤ 12 and −f(0, z, z) = 0. Finally, in case λ = 1/3, then
y2 − yz + z2 = 12 is binding by the CSC (since λ > 0), and we solve the first order conditions
with λ = 1/3 using Gaussian elimination: 2 −1 1

−1 2/3 −1/3
1 −1/3 2/3

 →

2 −1 1
0 1/6 1/6
0 1/6 1/6

 →

2 −1 1
0 1 1
0 0 0


Hence z is free, y + z = 0, or y = −z, and 2x − y + z = 0, or 2x = (−z) − z = −2z, which
gives x = −z. The constraint then gives (−z)2 − (−z)z + z2 = 3z2 = 12, or z2 = 4. Hence
z = 2 or z = −2, and we find the candidate points (−2,−2, 2; 1/3) and (2, 2,−2; 1/3) with
−f(2, 2,−2) = −(4 − 4 + (−4)) = 4 and −f(−2,−2, 2) = −(4 − 4 + (−4)) = 4. The two
candidate points with λ = 1/3 are therefore the best candidates for maximum of −f , and we
use the SOC to test if they are maxima: The function h(x) = L(x; 1/3) = −xTAx−1/3·xTDX
has Hessian matrix

H(h) = −2A− 2/3 ·D =

−2 1 −1
1 −2/3 1/3
−1 1/3 −2/3


The leading principal minors of H(h) are D1 = −2, D2 = 4/3 − 1 = 1/3 and D3 = 0 (since
the Gaussian process above shows that −H(h) has rank two). By the RRC, it follows that
H(h) is negative semidefinite, and it follows that h is concave. By the SOC, this means that
−fmax = 4, or the fmin = −4 in the original Kuhn-Tucker problem, with minimum points
(−2,−2, 2) and (2, 2,−2) where the Lagrange multiplier λ = 1/3.
Alternatively, we could find candidate points without using matrices: We write the Lagrangian
as L(x, y, z;λ) = −x2 + xy − xz − λ(y2 − yz + z2 − 12), and the first order conditions are

L′
x = −2x+ y − z = 0

L′
y = x− λ(2y − z) = 0

L′
z = −x− λ(−y + 2z) = 0

Adding the last two equations, we get −λ(y + z) = 0. If λ > 0, this gives y = −z. When we
substitute y = −z in the FOC’s, we get x = −z in the first equation, and λ = 1/3 from the last
two equations (since z = 0 gives the point (0, 0, 0) where the constraint is not binding, which
contradicts λ > 0). Binding constraint gives y2 − yz + z2 = (−z)2 − (−z)z + z2 = 3z2 = 12,
or z2 = 4 and z = ±2. We obtain the two candidate points with λ > 0:

(x, y, z;λ) = (−2,−2, 2; 1/3), (2, 2,−2; 1/3)

To show that these candidate points are maximum points in the Kuhn-Tucker problem in
standard form, or minimum points in the original problem, we use the SOC in the same way
as before (see above).

4


