Final exam in GRA 6035 Mathematics Solutions Date January 10th 2025 at 0900 - 1400

Question 1.

- (a) We use superposition to solve the first order difference equation $y_{t+1} 2y_t = 200$. To find the homogeneous solution, we solve the characteristic equation r-2=0, which gives r=2 and $y_t^h = C \cdot 2^t$. To find a particular solution, we set $y_t = A$ since 200 is constant. This gives A - 2A = 200, or A = -200. Therefore the particular solution is $y_t^p = -200$, and the general solution of the difference equation is $y_t = y_t^h + y_t^p = C \cdot 2^t - 200$. (b) The quadratic form $f(x, y, z) = x^2 - xz + yz$ has symmetric matrix

$$A = \begin{pmatrix} 1 & 0 & -1/2 \\ 0 & 0 & 1/2 \\ -1/2 & 1/2 & 0 \end{pmatrix}$$

The leading principal minors $D_1 = 1$, $D_2 = 0$, and $D_3 = 1(-1/4) - 1/2(0) = -1/4$. Since D_1 is positive and D_3 is negative, the quadratic form is indefinite.

- (c) The autonomous differential equation $y' = y(1 y^2)$ has equilibrium states given by y' = 0, or $F(y) = y(1-y^2) = y(1-y)(1+y) = 0$, and this gives $y_e = -1, 0, 1$. To determine their stability, we compute $F'(y) = (y - y^3)' = 1 - 3y^2$ at the equilibrium states y_e . Since $F'(\pm 1) = -2 < 0$ and F'(0) = 1 > 0, we conclude that the stable equilibrium states are $y_e = 1$ and $y_e = -1$.
- (d) The matrix A is upper triangular, and therefore has three eigenvalues (counted with multiplicity) equal to the diagonal entries $\lambda = 1$ and $\lambda = 2$ (with multiplicity two). Therefore A is diagonalizable if and only if dim $E_2 = 2$. Since dim $E_2 = 3 - \operatorname{rk}(A - 2I) = 2$ if and only if rk(A - 2I) = 1, we consider

$$A - 2I = \begin{pmatrix} -1 & s & 1\\ 0 & 0 & s\\ 0 & 0 & 0 \end{pmatrix}$$

This is an echelon form, and it has rank one if and only if s = 0. We conclude that A is diagonalizable if and only if s = 0.

Question 2.

(a) The trace of A is tr(A) = 2 + 2 + 2 = 6, and we find the determinant of A using cofactor expansion along the first row:

$$\det(A) = \begin{vmatrix} 2 & 1 & -1 \\ 1 & 2 & -1 \\ -1 & -1 & 2 \end{vmatrix} = 2(4-1) - 1(2-1) + (-1)(-1+2) = 6 - 1 - 1 = 4$$

This gives tr(A) = 6 and det(A) = 4.

(b) To find the characteristic equation of A, we use that tr(A) = 6 and det(A) = 4, and compute

$$c_2 = \begin{vmatrix} 2 & 1 \\ 1 & 2 \end{vmatrix} + \begin{vmatrix} 2 & -1 \\ -1 & 2 \end{vmatrix} + \begin{vmatrix} 2 & -1 \\ -1 & 2 \end{vmatrix} = 3 + 3 + 3 = 9$$

It follows that the characteristic equation is $-\lambda^3 + 6\lambda^2 - 9\lambda + 4 = 0$. Alternatively, we could find the characteristic equation of A by computing $|A - \lambda I|$ using cofactor expansion:

$$\begin{vmatrix} 2-\lambda & 1 & -1\\ 1 & 2-\lambda & -1\\ -1 & -1 & 2-\lambda \end{vmatrix} = (2-\lambda)((2-\lambda)^2 - 1) - 1(2-\lambda - 1) + (-1)(-1+2-\lambda)$$
$$= (2-\lambda)(\lambda^2 - 4\lambda + 3) - 2(1-\lambda) = -\lambda^3 + 6\lambda^2 - 9\lambda + 4$$

We see that when we substitute $\lambda = 1$, $\lambda = 2$, and $\lambda = 4$ in the expression on the left-hand side of the characteristic equation, we get

$$-1^{3} + 6 \cdot 1^{2} - 9 \cdot 1 + 4 = 0, \quad -2^{3} + 6 \cdot 2^{2} - 9 \cdot 2 + 4 = 2, \quad -4^{3} + 6 \cdot 4^{2} - 9 \cdot 4 + 4 = 0$$

We conclude that $\lambda = 1$ and $\lambda = 4$ are eigenvalues of A, but $\lambda = 2$ is not an eigenvalue of A.

- (c) We claim that the symmetric matrix A is positive definite: One way to see this is by computing all eigenvalues of A: Since $\lambda = 1$ and $\lambda = 4$ are eigenvalues by Question 2(b), the third eigenvalue is given by $1 + 4 + \lambda = \operatorname{tr}(A) = 6$, or $\lambda = 1$. Since A has three positive eigenvalues $\lambda_1 = \lambda_2 = 1$ and $\lambda_3 = 4$, it is positive definite. Alternatively, we could compute the leading principal minors of A: Since $D_1 = 2$, $D_2 = 4 - 1 = 3$ and $D_3 = |A| = 4$ are positive, A is positive definite. Using that f is a quadratic form, with (0,0,0) as a stationary point, and that f is positive definite and therefore convex, it follows that the origin is a global minimum point with value f(0,0,0) = 0. The range of f is $V_f = [0,\infty)$ since $f(x,0,0) = 2x^2 \to \infty$ as $x \to \infty$.
- (d) Since $f(x,0,0) = 2x^2 \ge 8$ for $x^2 \ge 4$, we have that (x,0,0) is in D for $x \ge 2$ and $x \le -2$. This means that D is not bounded, and therefore D is not compact.

Question 3.

(a) The quadratic form f(x, y, z) = xy - xz - yz has symmetric matrix

$$A = \begin{pmatrix} 0 & 1/2 & -1/2 \\ 1/2 & 0 & -1/2 \\ -1/2 & -1/2 & 0 \end{pmatrix}$$

Since the leading principal minor $D_2 = -1/4 < 0$, the quadratic form is indefinite, and this implies that any stationary points of u is a saddle point. Hence u has no (local or global) max or min, and the range of u is given by $V_u = \mathbb{R} = (-\infty, \infty)$. Alternatively, we could use the fact that $f(x, 1, 0) = x \to \pm \infty$ when $x \to \pm \infty$ to show this.

(b) Since the range of u is $\mathbb{R} = (-\infty, \infty)$, we consider the outer function $f(u) = e^u + e^{-u}$ as a function in one variable u with domain of definition $D_f = \mathbb{R} = (-\infty, \infty)$. Its first and second derivatives are given by

$$f'(u) = e^{u} + e^{-u} \cdot (-1) = e^{u} - e^{-u}, \quad f''(u) = e^{u} - e^{-u} \cdot (-1) = e^{u} + e^{-u}$$

We find the stationary points by solving the first order condition $f'(u) = e^u - e^{-u} = 0$, which gives $e^u = e^{-u}$, or u = -u. Hence 2u = 0, and u = 0 is the stationary point of f. Since f''(u) > 0 for all u, f is a convex function, and u = 0 is the global minimum point of f. Clearly f has no maximum since $f(u) = e^u + e^{-u} \to \infty$ when $u \to \pm \infty$. We conclude that fhas a minimum value $f_{\min} = f(0) = e^0 + e^{-0} = 2$, and no maximum value.

Question 4.

(a) We solve the differential equation $y'' - 7y' - 8y = 1 - 6t - 8t^2$ using superposition. Since the characteristic equation is $r^2 - 7r - 8 = (r - 8)(r + 1) = 0$, with characteristic roots r = 8 and r = -1, the homogeneous solution is $y_h = C_1 e^{8t} + C_2 e^{-t}$. To find a particular solution, we substitute $y = At^2 + Bt + C$ into the differential equation. This gives y' = 2At + B and y'' = 2A, and the left-hand side of the differential equation becomes

$$(2A) - 7(2At + B) - 8(At^{2} + Bt + C) = (-8A)t^{2} + (-14A - 8B)t + (2A - 7B - 8C)$$

Comparing coefficients, we find that -8A = -8, -14A - 8B = -6, and 2A - 7B - 8C = 1. This gives A = 1, -8B = 14(1) - 6 = 8 or B = -1, and -8C = -2(1) + 7(-1) + 1 = -8 or C = 1. Hence $y_p = t^2 - t + 1$ is a particular solution, and the general solution of the differential equation is $y = y_h + y_p = C_1 e^{8t} + C_2 e^{-t} + t^2 - t + 1$.

(b) The differential equation $4t^2y^3y' = 1$ is separable, and we separate the variables by dividing the equation with t^2 before we integrate both sides:

$$4y^{3} \cdot y' = \frac{1}{t^{2}} \quad \Rightarrow \quad \int 4y^{3} \, \mathrm{d}y = \int t^{-2} \, \mathrm{d}t \quad \Rightarrow \quad y^{4} = -t^{-1} + C = -\frac{1}{t} + C$$

The initial condition y(1) = 1 gives $1^4 = -1/1 + C$, or C = 2. We solve for y to get $y = \pm \sqrt[4]{2 - 1/t}$, and notice that only the positive solution satisfies the initial condition y(1) = 1. We conclude that the solution is

$$y = \sqrt[4]{2 - \frac{1}{t}}$$

(c) The differential equation $2y - 3t^2 + 2(t+1)y' = 0$ can be written in the form $p + q \cdot y' = 0$, and we try to solve it as an exact differential equation by finding a function h = h(t, y) such that

$$h'_t = 2y - 3t^2, \quad h'_y = 2(t+1) = 2t + 2$$

The first condition gives $h = 2yt - t^3 + C(y)$, and when we substitute this expression into the second condition, it becomes $h'_y = 2t + C'(y) = 2t + 2$. This means that C'(y) = 2, and we find the solution C(y) = 2y. Hence the differential equation is exact with general solution

$$h(t,y) = 2yt - t^3 + 2y = C \quad \Rightarrow \quad y(2t+2) = C + t^3 \quad \Rightarrow \quad y = \frac{C+t^3}{2t+2}$$

(d) The matrix A has eigenvalues $\lambda_1 = \lambda_2 = 1$ and $\lambda_3 = 4$ from Question 2(c). Since A is symmetric and therefore diagonalizable, we know that we have a base $\{\mathbf{v}_1, \mathbf{v}_2\}$ of E_1 and a base $\{\mathbf{v}_3\}$ of E_4 . We compute these base vectors using Gaussian elimination:

$$E_{1}: \begin{pmatrix} 1 & 1 & -1 \\ 1 & 1 & -1 \\ -1 & -1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
$$E_{4}: \begin{pmatrix} -2 & 1 & -1 \\ 1 & -2 & -1 \\ -1 & -1 & -2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -2 & -1 \\ -2 & 1 & -1 \\ -1 & -1 & -2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -2 & -1 \\ 0 & -3 & -3 \\ 0 & -3 & -3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -2 & -1 \\ 0 & -3 & -3 \\ 0 & 0 & 0 \end{pmatrix}$$

In E_1 we see that x+y-z=0, or x=-y+z with y, z free. We may therefore choose the base vectors $\mathbf{v}_1 = (-1, 1, 0)$ and $\mathbf{v}_2 = (1, 0, 1)$ of E_1 . In E_4 we see that -3y - 3z = 0, or y = -z, and x - 2y - z = 0, or x = 2(-z) + z = -z, with z free. We may therefore choose the base vector $\mathbf{v}_3 = (-1, -1, 1)$ of E_4 . This gives

$$\mathbf{y}_{t} = C_{1} \,\mathbf{v}_{1} \cdot \mathbf{1}^{t} + C_{2} \,\mathbf{v}_{2} \cdot \mathbf{1}^{t} + C_{3} \,\mathbf{v}_{3} \cdot \mathbf{4}^{t} = C_{1} \begin{pmatrix} -1\\1\\0 \end{pmatrix} + C_{2} \begin{pmatrix} 1\\0\\1 \end{pmatrix} + C_{3} \begin{pmatrix} -1\\-1\\1 \end{pmatrix} \cdot \mathbf{4}^{t}$$

Question 5.

(a) We notice that objective function $f(x, y, z) = x^2 - xy + xz$ is a quadratic form with symmetric matrix A, and that the function $g(x, y, z) = y^2 - yz + z^2$ defining the constraint is a quadratic form with symmetric matrix D, where A and D are given by

$$A = \begin{pmatrix} 1 & -1/2 & 1/2 \\ -1/2 & 0 & 0 \\ 1/2 & 0 & 0 \end{pmatrix}, \quad D = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & -1/2 \\ 0 & -1/2 & 1 \end{pmatrix}$$

We rewrite the Kuhn-Tucker problem to one in standard form, which can be stated as

$$\max - f(\mathbf{x}) = -\mathbf{x}^T A \mathbf{x} \text{ when } g(\mathbf{x}) = \mathbf{x}^T D \mathbf{x} \le 12$$

It has Lagrangian $\mathcal{L}(x, y, z; \lambda) = -\mathbf{x}^T A \mathbf{x} - \lambda (\mathbf{x}^T D \mathbf{x} - 12)$ when we write it in matrix form, and the first order conditions are $-2A\mathbf{x} - \lambda(2D\mathbf{x}) = \mathbf{0}$, or $2(A + \lambda D)\mathbf{x} = \mathbf{0}$ after multiplying the equation with -1. The constraint is $\mathbf{x}^T D \mathbf{x} \leq 12$ in matrix form, and the CSC's are $\lambda \geq 0$ and $\lambda = 0$ if $\mathbf{x}^T D \mathbf{x} < 12$. Alternatively, you could write the first order conditions as $(A + \lambda D)\mathbf{x} = \mathbf{0}$ (dividing the equation by 2). Alternatively, one could specify the Kuhn-Tucker conditions without using matrices (see below).

(b) The first order conditions give a homogeneous 3×3 linear system with parameter λ , and we have that $|2(A + \lambda D)| = 0$ or $\mathbf{x} = \mathbf{0}$. If $\mathbf{x} = \mathbf{0}$ then $\mathbf{x}^T D \mathbf{x} = 0 < 12$ is non-binding, and $\lambda = 0$. This gives the candidate point (0, 0, 0; 0) with -f(0, 0, 0) = 0. Otherwise, we have $|2(A + \lambda D)| = 0$, and to find candidate points in this case we solve the equation

$$|2(A + \lambda D)| = \begin{vmatrix} 2 & -1 & 1 \\ -1 & 2\lambda & -\lambda \\ 1 & -\lambda & 2\lambda \end{vmatrix} = 0$$

Using cofactor expansion along the first row, this gives

$$2(A + \lambda D)| = 2(4\lambda^2 - \lambda^2) - (-1)(-2\lambda + \lambda) + 1(\lambda - 2\lambda)$$
$$= 6\lambda^2 + (-\lambda) + (-\lambda) = 6\lambda^2 - 2\lambda = 2\lambda(3\lambda - 1) = 0$$

This means that $\lambda = 0$ or $\lambda = 1/3$. In case $\lambda = 0$, we have the first order conditions

$$2x - y + z = 0, \quad -x = 0, \quad x = 0$$

which gives x = 0 and y = z, and the constraint gives $z^2 - z^2 + z^2 = z^2 \le 12$. This gives the candidate points (0, z, z; 0) with $z^2 \le 12$ and -f(0, z, z) = 0. Finally, in case $\lambda = 1/3$, then $y^2 - yz + z^2 = 12$ is binding by the CSC (since $\lambda > 0$), and we solve the first order conditions with $\lambda = 1/3$ using Gaussian elimination:

$$\begin{pmatrix} 2 & -1 & 1 \\ -1 & 2/3 & -1/3 \\ 1 & -1/3 & 2/3 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & -1 & 1 \\ 0 & 1/6 & 1/6 \\ 0 & 1/6 & 1/6 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & -1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

Hence z is free, y + z = 0, or y = -z, and 2x - y + z = 0, or 2x = (-z) - z = -2z, which gives x = -z. The constraint then gives $(-z)^2 - (-z)z + z^2 = 3z^2 = 12$, or $z^2 = 4$. Hence z = 2 or z = -2, and we find the candidate points (-2, -2, 2; 1/3) and (2, 2, -2; 1/3) with -f(2, 2, -2) = -(4 - 4 + (-4)) = 4 and -f(-2, -2, 2) = -(4 - 4 + (-4)) = 4. The two candidate points with $\lambda = 1/3$ are therefore the best candidates for maximum of -f, and we use the SOC to test if they are maxima: The function $h(\mathbf{x}) = \mathcal{L}(\mathbf{x}; 1/3) = -\mathbf{x}^T A \mathbf{x} - 1/3 \cdot \mathbf{x}^T D \mathbf{X}$ has Hessian matrix

$$H(h) = -2A - 2/3 \cdot D = \begin{pmatrix} -2 & 1 & -1\\ 1 & -2/3 & 1/3\\ -1 & 1/3 & -2/3 \end{pmatrix}$$

The leading principal minors of H(h) are $D_1 = -2$, $D_2 = 4/3 - 1 = 1/3$ and $D_3 = 0$ (since the Gaussian process above shows that -H(h) has rank two). By the RRC, it follows that H(h) is negative semidefinite, and it follows that h is concave. By the SOC, this means that $-f_{\text{max}} = 4$, or the $f_{\text{min}} = -4$ in the original Kuhn-Tucker problem, with minimum points (-2, -2, 2) and (2, 2, -2) where the Lagrange multiplier $\lambda = 1/3$.

Alternatively, we could find candidate points without using matrices: We write the Lagrangian as $\mathcal{L}(x, y, z; \lambda) = -x^2 + xy - xz - \lambda(y^2 - yz + z^2 - 12)$, and the first order conditions are

$$\mathcal{L}'_x = -2x + y - z = 0$$

$$\mathcal{L}'_y = x - \lambda(2y - z) = 0$$

$$\mathcal{L}'_z = -x - \lambda(-y + 2z) = 0$$

Adding the last two equations, we get $-\lambda(y+z) = 0$. If $\lambda > 0$, this gives y = -z. When we substitute y = -z in the FOC's, we get x = -z in the first equation, and $\lambda = 1/3$ from the last two equations (since z = 0 gives the point (0, 0, 0) where the constraint is not binding, which contradicts $\lambda > 0$). Binding constraint gives $y^2 - yz + z^2 = (-z)^2 - (-z)z + z^2 = 3z^2 = 12$, or $z^2 = 4$ and $z = \pm 2$. We obtain the two candidate points with $\lambda > 0$:

$$(x, y, z; \lambda) = (-2, -2, 2; 1/3), (2, 2, -2; 1/3)$$

To show that these candidate points are maximum points in the Kuhn-Tucker problem in standard form, or minimum points in the original problem, we use the SOC in the same way as before (see above).