
Solutions Final exam in GRA 6035 Mathematics
Date November 25th 2024 at 0900 - 1400

Question 1.

(a) The differential equation y′′ − 3y′ − 10y = 0 is a linear second order differential equation that
is homogeneous, and it has characteristic equation r2 − 3r − 10 = 0. The characteristic roots
are r1 = 5 and r2 = −2, since 5 + (−2) = 3 and 5(−2) = −10. Hence the general solution is

y = C1 · e5t + C2 · e−2t

(b) The quadratic form f(x, y, z) = x2 + 4xy + 2xz + 3y2 + 2yz has symmetric matrix

A =

1 2 1
2 3 1
1 1 0


The leading principal minor D2 = 3− 4 = −1 < 0, hence the quadratic form is indefinite.

(c) We use Gaussian elimination to find an echelon form E of the matrix A:

A =

1 2 3 1
2 3 5 2
1 3 s 5

 →

1 2 3 1
0 −1 −1 0
0 1 s− 3 4

 →

1 2 3 1
0 −1 −1 0
0 0 s− 4 4

 = E

We see that the last row of E has a pivot position in the third column if s ̸= 4, and in the
fourth column if s = 4. Hence the rank of A is rkA = 3 for all values of s.

(d) The set D = {(x, y, z) : x2 + 2y2 − 3z2 ≤ 6} is closed, since it is given by a closed inequality.
We see that when x = y = 0, the inequality defining D becomes −3z2 ≤ 6, which is satisfied
for all values of z. Hence (0, 0, z) is in D for all values of z, and this means that D is not
bounded, and therefore not compact.

Question 2.

(a) The trace of A is tr(A) = 1 + 2 + 5 = 8, and we find the determinant of A using cofactor
expansion along the last row:

det(A) =

∣∣∣∣∣∣
1 2 −2
2 2 0
−2 0 5

∣∣∣∣∣∣ = −2(0 + 4) + 5(2− 4) = −8− 10 = −18

This gives tr(A) = 8 and det(A) = −18.
(b) To show that v is an eigenvector of A, we compute Av and compare it with λv:

Av =

 1 2 −2
2 2 0
−2 0 5

 ·

 3
−2
1

 =

−3
2
−1

 , λv = λ ·

 3
−2
1

 =

 3λ
−2λ
λ


We see that Av = λv when λ = −1, hence v is an eigenvector of A with eigenvalue λ = −1.

(c) Since A is symmetric, we know that A has three eigenvalues λ1, λ2, λ3 (where eigenvalues are
repeated according to their multiplicities), and from (b) when know that λ1 = −1 is one of
the eigenvalues. Using the equations

λ1 + λ2 + λ3 = tr(A) = 8, λ1 · λ2 · λ3 = det(A) = −18

we find that λ2 + λ3 = 8 − (−1) = 9 and λ2λ3 = −18/(−1) = 18. This gives λ2 = 3 and
λ3 = 6, and we conclude that the eigenvalues of A are λ1 = −1, λ2 = 3, and λ3 = 6.

(d) We have that w = (x, y, z) is orthogonal to v if and only if v · w = 3x − 2y + z = 0, hence
W = Null(B) with B =

(
3 −2 1

)
. Since rkB = 1, we have that dimW = 3 − 1 = 2. We

know that dimE3 = dimE6 = 1 since the eigenvalues λ = 3 and λ = 6 have multiplicity one.
Therefore we can find a base of E3 consisting of one vector w1, and a base of E6 consisting
of one vector w2. Moreover, since A is symmetric, and v,w1,w2 are eigenvectors of A with
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different eigenvalues, we have that v ·w1 = v ·w2 = w1 ·w2 = 0. In other words, w1 and w2

are orthogonal vectors in W . We find these vectors explicitly using Gaussian elimination:

E3 :

−2 2 −2
2 −1 0
−2 0 2

 →

−2 2 −2
0 1 −2
0 0 0

 E6 :

−5 2 −2
2 −4 0
−2 0 −1

 →

−2 0 −1
0 −4 −1
0 0 0


This gives w1 = (1, 2, 1) and w2 = (2, 1,−4) (or non-zero scalar multiples of these vectors). It
follows that

B = {w1,w2} with w1 =

1
2
1

 , w2 =

 2
1
−4


is a base of the 2-dimensional vector space W consisting of pairwise orthogonal vectors.

Question 3.

(a) The differential equation is autonomous and can be written y′ = F (y) with F (y) = y(1− y).
Since F (y) = y(1 − y) = 0 gives y = 0 or y = 1, these are the equilibrium states. To check
whether they are stable, we use the Stability Theorem, and compute

F ′(y) = (y(1− y))′ = (y − y2)′ = 1− 2y

This gives F ′(0) = 1 > 0, or that ye = 0 is unstable, and F ′(1) = −1 < 0, or that ye = 1 is
stable. We conclude that the stable equilibrium states are ye = 1.

(b) The differential equation y′ = 2ty2 is separable, and we separate the variables before we
integrate both sides:

y′ = 2ty2 ⇒ 1

y2
y′ = 2t ⇒

∫
1

y2
dy =

∫
2tdt ⇒ −1

y
= t2 + C

The initial condition y(0) = 1 gives −1/1 = 02 + C, or C = −1. We write the solution in
explicit form and obtain

−1

y
= t2 − 1 ⇒ 1

y
= 1− t2 ⇒ y =

1

1− t2

(c) We write the system of differential equations in the form y′ = Ay + b, where

y =

(
y1
y2

)
, A =

(
8 −3
2 1

)
, b =

(
2
4

)
To solve the homogeneous equation, we find the eigenvalues and eigenvectors of A. The
characteristic equation is λ2 − 9λ + 14 = 0 since A has trace 9 and determinant 14. We
factorize this as (λ− 2)(λ− 7) = 0, which gives λ1 = 2 and λ2 = 7. Since each eigenvalue has
multiplicity one, there is a base vi for Eλi

which we can find using Gaussian elimination:

E2 :

(
6 −3
2 −1

)
→

(
6 −3
0 0

)
E7 :

(
1 −3
2 −6

)
→

(
1 −3
0 0

)
We may choose the base vectors v1 = (1, 2) and v2 = (3, 1). This gives

yh = C1v1e
λ1t + C2v2e

λ2t = C1

(
1
2

)
· e2t + C2

(
3
1

)
· e7t

We find the equilibrium state by solving Ay+ b = 0, which is a linear system Ay = −b that
we can solve using Gaussian elimination:(

8 −3 −2
2 1 −4

)
→

(
2 1 −4
8 −3 −2

)
→

(
2 1 −4
0 −7 14

)
Back substitution gives −7y2 = 14, or y2 = −2, and 2y1 − 2 = −4, or y1 = −1. The
equilibrium state is therefore ye = (−1,−2), and since yp = ye is a particular solution of the
inhomogeneous system of differential equations y′ = Ay + b, the general solution is given by

y = yh + yp = C1

(
1
2

)
· e2t + C2

(
3
1

)
· e7t +

(
−1
−2

)
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Question 4.

(a) We write u(x) = xTAx+Bx+ C in matrix form, with

A =

 1 1 −1
1 2 −1
−1 −1 1

 , B =
(
2 4 −2

)
, C = 4

The first order conditions for u are 2Ax + BT = 0, which can be written 2Ax = −BT . We
solve this linear system using Gaussian elimination: 2 2 −2 −2

2 4 −2 −4
−2 −2 2 2

 →

2 2 −2 −2
0 2 0 −2
0 0 0 0


We see that z is free, 2y = −2, or y = −1 and 2x + 2(−1) − 2z = −2, or x = z. There are
therefore infinitely many stationary points (x, y, z) = (z,−1, z) with z free.

(b) Since the leading principal minors of A are D1 = 1, D2 = 2− 1 = 1 and D3 = 0, for example
using the echelon form of 2A found in (a), we see that A is positive semi-definite by the RRC.
This means that u is convex, and the stationary points found in (a) are minimum points. The
minimum value of u is umin = u(0,−1, 0) = 2 since z = 0 yields one of the minimum points
(0,−1, 0). Clearly, u has no maximum value, since y = z = 0 gives f(x, 0, 0) = x2+2x+4 → ∞
when x → ∞. In other words, the range of u is Vu = [2,∞).

(c) We consider the outer function f(u) = u ln(u)− 2u as a function of one variable with domain
of definition equal to the range of u, which can be written u ≥ 2. We compute the derivative
of the outer function:

f ′(u) = 1 ln(u) + u(1/u)− 2 = ln(u)− 1

Hence f ′(u) = 0 when ln(u)−1 = 0, and this gives ln(u) = 1, or u = e1 = e > 2. We see that f
is decreasing in the interval [2, e] and increasing in [e,∞). This means that u = e is a minimum
point for f , and fmin = f(e) = e ln(e) − 2e = e − 2e = −e. To determine whether f has a
maximum, we compute f(2) = 2 ln 2− 2 = 2(ln 2− 1) and notice that f(u) = u(lnu− 2) → ∞
when u → ∞. We conclude that f has no maximum value, and its range is Vf = [−e,∞).

Question 5.

(a) We notice that objective function is a quadratic form with symmetric matrix I, and that the
function g(x, y, z) = xy − xz − yz defining the constraint is a quadratic form with symmetric
matrix

A =

 0 1/2 −1/2
1/2 0 −1/2
−1/2 −1/2 0


We rewrite the Kuhn-Tucker problem to one in standard form, which can be stated as

max−f(x, y, z) = −x2 − y2 − z2 when − g(x, y, z) = −xy + xz + yz ≤ −4

It has Lagrangian L(x, y, z;λ) = −xT Ix−λ(−xTAx+4) when we write it in matrix form, and
the first order conditions are −2Ix− λ(−2Ax) = 0, or 2(I − λA)x = 0 after multiplying the
equation with −1. The constraint is xTAx ≥ 4 in matrix form, and the CSC’s are λ ≥ 0 and
λ = 0 if xTAx > 4. Alternatively, you could write the first order conditions as (I − λA)x = 0
(dividing the equation by 2), the constraint as −xTAx ≤ −4 and the CSC’s as λ ≥ 0 and
λ = 0 if −xTAx < −4 (using the constraint from the standard form rather than the equivalent
original form).

(b) The first order conditions give a homogeneous 3× 3 linear system with parameter λ, and we
have that |I − λA| = 0 or x = 0. Since x = 0 does not satisfy the constraint, we solve the
equation

|I − λA| =

∣∣∣∣∣∣
1 −λ/2 λ/2

−λ/2 1 λ/2
λ/2 λ/2 1

∣∣∣∣∣∣ =
∣∣∣∣∣∣
1 −t t
−t 1 t
t t 1

∣∣∣∣∣∣ = 0
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where we write t = λ/2 for simplicity. Using cofactor expansion along the first row, this gives

|I − λA| = 1(1− t2) + t(−t− t2) + t(−t2 − t)

= (1− t)(1 + t) + t(−t)(1 + t) + t(−t)(t+ 1) = (t+ 1)(1− t− 2t2)

= (t+ 1)(1 + t)(1− 2t) = −2(t+ 1)2(t− 1/2) = 0

This means that t = −1 or t = 1/2, or that λ = −2 or λ = 1. By the CSC, we have that
λ ≥ 0, and therefore we must have λ = 1. We solve the first order conditions for λ = 1 using
Gaussian elimination:

I −A =

 1 −1/2 1/2
−1/2 1 1/2
1/2 1/2 1

 →

1 −1/2 1/2
0 3/4 3/4
0 3/4 3/4

 →

1 −1/2 1/2
0 3 3
0 0 0


Hence z is free, 3y+3z = 0, or y = −z, and x−1/2(−z)+1/2(z) = 0, or x = −z. This means
that the points (−z,−z, z; 1) satisfy the first order conditions. The CSC’s give xy−xz−yz = 4
since λ > 0, or (−z)2 − (−z)z − (−z)z = 3z2 = 4, or z = ±2/

√
3. We conclude that there are

two candidate points that satisfies the Kuhn-Tucker conditions:

(x, y, z;λ) = (−2/
√
3,−2/

√
3, 2/

√
3; 1), (2/

√
3, 2/

√
3,−2/

√
3; 1)

These candidate points have −f = −4/3 ·3 = −4. We test whether these are maximum points
using the SOC, and let h(x, y, z) = L(x, y, z; 1). This gives

h(x, y, z) = −xT Ix− 1(−xTAx+ 4) ⇒ H(h) = −2I + 2A =

−2 1 −1
1 −2 −1
−1 −1 −2


The leading principal minors are D1 = −2, D2 = 3, and since |I − A| = 0 from the Gaussian
elimination above, D3 = | − 2(I − A)| = (−2)3|I − A| = 0. It follows by the RRC that H(h)
is negative semidefinite and that h is concave, and from the SOC that the two candidate
points are maximum points in the Kuhn-Tucker problem in standard form. This means that
−fmax = −4 is the maximum value of −f , and therefore fmin = 4 is the minimum value in the
original Kuhn-Tucker problem. As an alternative method, rather solving than |I −λA| = 0 to
find λ (as we have done above), we could solve the equation

|2(I − λA)| =

∣∣∣∣∣∣
2 −λ λ
−λ 2 λ
λ λ 2

∣∣∣∣∣∣ = 0

With this approach, we would find the factorization of the left-hand side as

2(4− λ2) + λ(−2λ− λ2) + λ(−λ2 − 2λ) = 2(2− λ)(2 + λ)− 2λ2(λ+ 2)

= 2(λ+ 2)(2− λ− λ2) = −2(λ+ 2)(λ2 + λ− 2) = −2(λ+ 2)(λ+ 2)(λ− 1)

Hence we would obtain the Lagrange multipliers λ = −2 and λ = 1 directly.
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