Solutions Final exam in GRA 6035 Mathematics
Date November 25th 2024 at 0900 - 1400

Question 1.

(a) The differential equation y” — 3y’ — 10y = 0 is a linear second order differential equation that
is homogeneous, and it has characteristic equation 2 — 37 — 10 = 0. The characteristic roots
are 1 = 5 and rp = —2, since 5 + (—2) = 3 and 5(—2) = —10. Hence the general solution is

y=0Cp- et 40y e

(b) The quadratic form f(z,y,z) = 2 + 4ay + 2wz + 3y? + 2yz has symmetric matrix

A=

— N =
W N
[

The leading principal minor Dy = 3 — 4 = —1 < 0, hence the quadratic form is indefinite.
(c) We use Gaussian elimination to find an echelon form E of the matrix A:

1 2 31 1 2 3 1 1 2 3 1
A=12 3 5 2| - |0 -1 -1 0] - [0 -1 -1 O|=F
1 3 s 5 0 1 s-3 4 0 0 s—4 4

We see that the last row of F has a pivot position in the third column if s # 4, and in the
fourth column if s = 4. Hence the rank of A is rk A = 3 for all values of s.

(d) The set D = {(z,y, 2) : 2% + 2y* — 322 < 6} is closed, since it is given by a closed inequality.
We see that when = y = 0, the inequality defining D becomes —32% < 6, which is satisfied
for all values of z. Hence (0,0, z) is in D for all values of z, and this means that D is not
bounded, and therefore not compact.

Question 2.

(a) The trace of A is tr(A) = 14+ 245 = 8, and we find the determinant of A using cofactor
expansion along the last row:

1 2 -2
det(A)=]2 2 0|=-20+4)+52—-4)=-8—10=—18
2 0 5

This gives tr(A) = 8 and det(A4) = —18.
(b) To show that v is an eigenvector of A, we compute Av and compare it with Av:

1 2 =2 3 -3 3 3A
Av=1[2 2 0 |-[-2]=121], Av=A-|-2]=1]-2X
-2 0 5 1 -1 1 A
We see that Av = Av when A\ = —1, hence v is an eigenvector of A with eigenvalue A = —1.
(c) Since A is symmetric, we know that A has three eigenvalues A1, A2, A\3 (where eigenvalues are
repeated according to their multiplicities), and from (b) when know that \; = —1 is one of

the eigenvalues. Using the equations
AL+ X+ A3 = tr(A) =8, Al-X-A3= det(A) = —18

we find that Ay + A3 = 8 — (—1) = 9 and MA3 = —18/(—1) = 18. This gives A2 = 3 and
A3 = 6, and we conclude that the eigenvalues of A are Ay = —1, Ao = 3, and \3 = 6.

(d) We have that w = (z,y, z) is orthogonal to v if and only if v-w = 3z — 2y + z = 0, hence
W = Null(B) with B = (3 —2 1). Since rk B = 1, we have that dimW =3 —-1=2. We
know that dim F3 = dim Eg = 1 since the eigenvalues A = 3 and A = 6 have multiplicity one.
Therefore we can find a base of F3 consisting of one vector wi, and a base of Fg consisting
of one vector wo. Moreover, since A is symmetric, and v, wi, ws are eigenvectors of A with
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different eigenvalues, we have that v-wi; = v - wo = wy - wo = 0. In other words, wi and wo
are orthogonal vectors in W. We find these vectors explicitly using Gaussian elimination:

—2 2 -2 —2 2 -2 -5 2 -2 —2 0 -1
Es: |2 -1 o] =0 1 —2 Eg: |2 -4 o] >0 -4 41
2 0 2 0 0 0 -2 0 -1 0 0 0

This gives w; = (1,2,1) and wa = (2,1, —4) (or non-zero scalar multiples of these vectors). It
follows that

1 2
B={wy,wo} withw;=|[2], wo=|[ 1
1 —4

is a base of the 2-dimensional vector space W consisting of pairwise orthogonal vectors.

Question 3.
(a) The differential equation is autonomous and can be written y' = F(y) with F(y) = y(1 — y).
Since F(y) = y(1 —y) = 0 gives y = 0 or y = 1, these are the equilibrium states. To check
whether they are stable, we use the Stability Theorem, and compute

Flly)=@l-y) =@—-y)=1-2
This gives F'(0) =1 > 0, or that y. = 0 is unstable, and F'(1) = —1 < 0, or that y. = 1 is
stable. We conclude that the stable equilibrium states are y. = 1.
(b) The differential equation y’ = 2ty? is separable, and we separate the variables before we
integrate both sides:
1 1 1
y =2 = Sy=2t = /Qdy:/%dt = —=t*4C
Y Y Y
The initial condition y(0) = 1 gives —1/1 = 0> + C, or C = —1. We write the solution in
explicit form and obtain
1 1 1
y y 1—12
(¢) We write the system of differential equations in the form y’ = Ay + b, where

A o 8 -3 . 2
=) =G ) ()
To solve the homogeneous equation, we find the eigenvalues and eigenvectors of A. The
characteristic equation is A\*> — 9\ + 14 = 0 since A has trace 9 and determinant 14. We

factorize this as (A — 2)(\ — 7) = 0, which gives \; = 2 and A2 = 7. Since each eigenvalue has
multiplicity one, there is a base v; for Ey, which we can find using Gaussian elimination:

6 —3 6 —3 1 -3 1 -3
e 006 w036
We may choose the base vectors vi = (1,2) and vy = (3,1). This gives
yh = CrvieM + Covae™ = Cy @ -e” 4+ Oy ® et

We find the equilibrium state by solving Ay + b = 0, which is a linear system Ay = —b that
we can solve using Gaussian elimination:

2 1 |—4

0 -7 14

8—3—2_>21—4_>
2 1|4 8 =3 | -2

Back substitution gives —7yy, = 14, or yo = —2, and 2y; — 2 = —4, or y; = —1. The
equilibrium state is therefore y. = (-1, —2), and since y, = y. is a particular solution of the
inhomogeneous system of differential equations y’ = Ay + b, the general solution is given by

1 3 -1
y=Yn+ty,=0C1 <2> e®t 4 Cy <1> et 4 <_2>



Question 4.

(a)

We write u(x) = x! Ax 4+ Bx + C in matrix form, with

11 -1
A=|(1 2 -1|, B=(2 4 -2), C=4
-1 -1 1

The first order conditions for u are 2Ax + BT = 0, which can be written 24x = —BT. We
solve this linear system using Gaussian elimination:

2 2 =2| -2 2 2 =2]-=2
2 4 -2|-4] —- (0 2 0|-2
-2 -2 2 2 00 O 0

We see that z is free, 2y = —2, or y = —1 and 2z + 2(—1) — 2z = =2, or z = z. There are
therefore infinitely many stationary points (z,vy,2) = (z, —1, z) with z free.

Since the leading principal minors of A are D1 =1, Do =2 —1 =1 and D3 = 0, for example
using the echelon form of 24 found in (a), we see that A is positive semi-definite by the RRC.
This means that u is convex, and the stationary points found in (a) are minimum points. The
minimum value of u is upin = u(0,—1,0) = 2 since z = 0 yields one of the minimum points
(0,—1,0). Clearly, u has no maximum value, since y = z = 0 gives f(x,0,0) = 22+2x+4 — 0o
when & — co. In other words, the range of u is V,, = [2, 00).

We consider the outer function f(u) = uln(u) — 2u as a function of one variable with domain
of definition equal to the range of u, which can be written u > 2. We compute the derivative
of the outer function:

f(u) =1In(u) + u(l/u) — 2 =In(u) — 1

Hence f’(u) = 0 when In(u) —1 = 0, and this gives In(u) = 1, or u = ¢! = ¢ > 2. We see that f
is decreasing in the interval [2, e] and increasing in [e, 00). This means that u = e is a minimum
point for f, and fuin = f(e) = eln(e) — 2e = e — 2e = —e. To determine whether f has a
maximum, we compute f(2) =2In2—2 = 2(In2 — 1) and notice that f(u) = u(lnu—2) — oo
when u — co. We conclude that f has no maximum value, and its range is Vy = [—e, 00).

Question 5.

(a)

We notice that objective function is a quadratic form with symmetric matrix I, and that the
function g(z,y,2) = xy — xz — yz defining the constraint is a quadratic form with symmetric
matrix
0 /2 —1/2
A= 1/2 0 —1/2
-1/2 —1/2 0

We rewrite the Kuhn-Tucker problem to one in standard form, which can be stated as
max — f(z,y, 2) = —22 — y* — 22 when — g(z,y,2) = —zy + x2 4+ yz < —4

It has Lagrangian £(z,y, z; \) = —x! Ix — A\(—x! Ax+4) when we write it in matrix form, and
the first order conditions are —2Ix — A\(—2Ax) = 0, or 2(I — AA)x = 0 after multiplying the
equation with —1. The constraint is x! Ax > 4 in matrix form, and the CSC’s are A > 0 and
A = 0if xT Ax > 4. Alternatively, you could write the first order conditions as (I — AA)x =0
(dividing the equation by 2), the constraint as —x? Ax < —4 and the CSC’s as A > 0 and
A =0 if —x? Ax < —4 (using the constraint from the standard form rather than the equivalent
original form).

The first order conditions give a homogeneous 3 x 3 linear system with parameter A, and we
have that |[I — AA] = 0 or x = 0. Since x = 0 does not satisfy the constraint, we solve the
equation

1 =A/2 A2 |1 =t ¢
T—MA|=|-A/2 1 A2/=|-t 1 t|=0
A2 A2 1 tot o1
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where we write ¢t = \/2 for simplicity. Using cofactor expansion along the first row, this gives
[T —MA| = 1(1 — %) + t(—t — t*) + t(—t* — 1)
=1 =) A +t)+t(—t) A +t) +t(—t)(t+1) = (t+1)(1 —t — 2t?)
=(t+1)A+t)(1-2t)=—=20t+1)*t—-1/2)=0

This means that t = —1 or t = 1/2, or that A = —2 or A = 1. By the CSC, we have that
A > 0, and therefore we must have A = 1. We solve the first order conditions for A = 1 using
Gaussian elimination:

1 —1/2 1/2 1 —1/2 1/2 1 —1/2 1/2
I—A=|-12 1 12| - [0 3/4 3/4| - [0 3 3
12 1/2 1 0 3/4 3/4 0 0 0

Hence z is free, 3y+32z =0, or y = —z, and x — 1/2(—2) 4+ 1/2(2) = 0, or x = —z. This means
that the points (—z, —z, z; 1) satisfy the first order conditions. The CSC’s give zy—zz—yz = 4
since A > 0, or (—2)2 — (—=2)z — (—2)z = 322 = 4, or z = +2/1/3. We conclude that there are
two candidate points that satisfies the Kuhn-Tucker conditions:

(z,y,2;\) = (=2/v3,-2/v/3,2/v/3;1), (2/V3,2/V/3,-2/v/3;1)

These candidate points have —f = —4/3-3 = —4. We test whether these are maximum points
using the SOC, and let h(x,y, z) = L(z,y, 2;1). This gives

-2 1 -1
h(z,y,2) = —xTIx —1(—xTAx+4) = H(Mh)=-2I+24=|1 -2 -1
-1 -1 -2
The leading principal minors are D; = —2, Dy = 3, and since |I — A| = 0 from the Gaussian
elimination above, D3 = | — 2(I — A)| = (=2)3|I — A| = 0. It follows by the RRC that H(h)

is negative semidefinite and that h is concave, and from the SOC that the two candidate
points are maximum points in the Kuhn-Tucker problem in standard form. This means that
— fmax = —4 is the maximum value of — f, and therefore fi, = 4 is the minimum value in the
original Kuhn-Tucker problem. As an alternative method, rather solving than [/ — AA| = 0 to
find A (as we have done above), we could solve the equation

2 -\ A
21 = AA)[=|-A 2 A =0
AN 2

With this approach, we would find the factorization of the left-hand side as
24 =X+ A=2X = A + A(=A2—20) =22 N2+ \) — 202 (A +2)
=204+2)2- A=) = 20+ 2)(NV+ A -2) = 20 +2)(A+2)(A = 1)
Hence we would obtain the Lagrange multipliers A = —2 and A = 1 directly.



