Key Problems

Problem 1.

We consider the vectors $\mathbf{v}_1 = (1,3,4)$, $\mathbf{v}_2 = (-1,3,4)$, $\mathbf{v}_3 = (5,3,4)$, $\mathbf{v}_4 = (6,4,5)$, $\mathbf{v}_5 = (4,2,3)$.

- a) Is \mathbf{v}_3 in span $(\mathbf{v}_1, \mathbf{v}_2)$?
- b) Express \mathbf{v}_5 as a linear combination of $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4$ if possible.
- c) Are $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_4$ linearly independent vectors?
- d) Are $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_5$ linearly independent vectors?
- e) Determine the dimension of $V = \text{span}(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4, \mathbf{v}_5)$, and find a base of V.
- f) Express \mathbf{v}_5 as a linear combination of $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4$ in a different way than in (b), if possible.

Problem 2.

Find a parametric description of the line through the points (1,2,1) and (4,5,3) in \mathbb{R}^3 . Determine the intersection points (x,y,z) of this line and the plane x-y+z=6.

Problem 3.

Determine dim V and dim W when V = Col(A), W = Null(A), and A is the 3×5 matrix A given below, and find a base of V and W:

$$A = \begin{pmatrix} 1 & -1 & 5 & 6 & 4 \\ 2 & 4 & -2 & -2 & -2 \\ 3 & 5 & -1 & -1 & -1 \end{pmatrix}$$

Problem 4.

Let A be a 8×8 matrix with rank given by rk(A) = 7 and let **b** be a vector in \mathbb{R}^8 . Determine:

- a) $\dim \text{Null}(A)$ and $\dim \text{Col}(A)$
- b) The number of solutions of $A\mathbf{x} = \mathbf{0}$
- c) The number of solutions of $A\mathbf{x} = \mathbf{b}$
- d) The number of solutions of $A\mathbf{x} = \mathbf{0}$ that satisfies $x_1 + x_2 + \cdots + x_8 = 1$

Problem 5.

We consider the vectors $\mathbf{u} = (1,1,2,1)$, $\mathbf{v} = (2,4,-1,2)$ and $\mathbf{w} = (1,2,4,2)$.

- a) Compute $\mathbf{u} \cdot \mathbf{v}$ and $||\mathbf{u}||$.
- b) Find the orthogonal projection $proj_{\mathbf{v}}(\mathbf{u})$ of \mathbf{u} onto \mathbf{v} .
- c) Determine the scalar a such that $\mathbf{v} a \cdot \mathbf{w}$ is orthogonal to \mathbf{w} .

Exercise problems

Problems from the textbook: [E] 2.1 - 2.16

Exam problems: [Midterm 10/2019] Question 1, 2, 8 [Midterm 10/2022] Question 1, 2, 7

Answers to Key Problems

Problem 1.

b)
$$\mathbf{v}_5 = 6\mathbf{v}_1 - 4\mathbf{v}_2 - \mathbf{v}_4$$

e) dim
$$V = 3$$
, and $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_4\}$ is a base of V

f)
$$\mathbf{v}_5 = 2\mathbf{v}_3 - \mathbf{v}_4$$

Problem 2.

Parametric description: (x,y,z) = (1+3t,2+3t,1+2t). Intersection point: (x,y,z) = (10,11,7).

Problem 3.

a) dim
$$V = 3$$
, and $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_4\}$ is a base of V when \mathbf{v}_i is the i'th column vectors of A

b) dim
$$W = 2$$
, and $\{\mathbf{w}_1, \mathbf{w}_2\}$ is a base for W when $\mathbf{w}_1 = (-3,2,1,0,0), \mathbf{w}_2 = (-6,4,0,1,1)$

Problem 4.

a)
$$\dim \text{Null}(A) = 1$$
 and $\dim \text{Col}(A) = 7$

- c) Infinitely many solutions (one degree of freedom) if \mathbf{b} is a linear combination of the columns of A, otherwise no solutions
- d) No solutions if $(1,1,\ldots,1)$ is a linear combination of the rows of A, otherwise one unique solution.

Problem 5.

a)
$$\mathbf{u} \cdot \mathbf{v} = 6$$
, $||\mathbf{u}|| = \sqrt{7}$

b)
$$\operatorname{proj}_{\mathbf{v}}(\mathbf{u}) = 6/25 \cdot \mathbf{v}$$

c)
$$a = 2/5$$