Key Problems

Problem 1.

We consider the constrained optimization problem max $f(x,y,z) = 2x^2 - 4y^2 - 2z^2$ when $x^4 + y^4 + z^4 \le 16$.

- a) Find the maximum point and maximum value of f.
- b) Use the envelope theorem to estimate the new maximum value of f when we change
 - i) the constraint to $x^4 + y^4 + z^4 \le 20$ ii) the objective function to $f(x,y,z) = x^2 4y^2 2z^2$

Problem 2.

Determine the range of the following quadratic functions:

- a) $f(x,y,z) = x^2 + 4xz + y^2 + 5z^2 4y + 2z$
- b) $f(x,y,z,w) = 3x^2 + 2xy + 8xz 2xw + y^2 + 4yz + 2yw + 6z^2 + 3w^2 + 1$

Problem 3.

We consider the Lagrange problem given by

$$\min f(x,y,z,w) = -4x^2 - 10y^2 - 5z^2 - 5w^2 + 4xz + 4xw - 4yz + 4yw + 6zw \text{ when } x^2 + y^2 + z^2 + w^2 = 6$$

- a) Determine whether f is convex or concave.
- b) Find all points (x,y,z,w) such that $(x,y,z,w;\lambda)$ satisfy the Lagrange conditions when $\lambda=-12$.
- c) Solve $\max f(x, y, z, w)$ subject to $x^2 + y^2 + z^2 + w^2 = 6$.

Problem 4.

Let $g(x,y,z,w) = 3x^2 + 2xy + 8xz - 2xw + y^2 + 4yz + 2yw + 7z^2 + 4w^2$, and consider the Kuhn-Tucker problem given by

$$\max f(x,y,z) = x + y + z + w \text{ subject to } g(x,y,z,w) \le 18$$

- a) Determine the definiteness of the quadratic form q.
- b) Write down the Kuhn-Tucker conditions of the problem in matrix form.
- c) Write down the non-degenerate constraint qualification in this problem, and find all admissible points where this condition does not hold (if there are any).
- d) Solve the Kuhn-Tucker problem.
- e) Determine whether the set $D = \{(x,y,z,w) : g(x,y,z,w) \le 18\}$ of admissible points is a compact set.

Exercise Problems

Exam problems [Final 01/2018] Question 1,3,4

Answers to Key Problems

Problem 1.

a)
$$(x,y,z;\lambda) = (\pm 2,0,0;1/4)$$
 with $f(\pm 2,0,0) = 8$

b) i)
$$f_{\text{max}} \cong 9$$
 ii) $f_{\text{max}} \cong 4$

Problem 2.

a)
$$[-5, \infty)$$

b)
$$[1,\infty)$$

Problem 3.

a)
$$f$$
 is concave

b)
$$(0, -2, -1, 1; -12), (0, 2, 1, -1; -12)$$

c)
$$f_{\text{max}} = 0$$

Problem 4.

a) positive definite

b)
$$\mathbf{e} - 2\lambda A\mathbf{x} = \mathbf{0}, \ \mathbf{x}^T A\mathbf{x} \le 18, \ \lambda \ge 0, \ \lambda(\mathbf{x}^T A\mathbf{x} - 18) = 0$$

c) no admissible points where NDCQ does not hold

d)
$$f_{\text{max}} = 6$$

e) D is compact