Key Problems

Problem 1.

Find all eigenvalues of A, and a base for the eigenspace E_{λ} for each eigenvalue λ :
a) $A=\left(\begin{array}{ll}3 & 7 \\ 7 & 3\end{array}\right)$
b) $A=\left(\begin{array}{cc}1 & 1 \\ -1 & 3\end{array}\right)$
c) $A=\left(\begin{array}{ll}2 & -4 \\ 3 & -1\end{array}\right)$
d) $A=\left(\begin{array}{lll}4 & 0 & 1 \\ 0 & 5 & 0 \\ 1 & 0 & 4\end{array}\right)$
e) $A=\left(\begin{array}{lll}2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2\end{array}\right)$
f) $A=\left(\begin{array}{lll}2 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 2\end{array}\right)$

Problem 2.

Determine whether the matrix A is diagonalizable, and find an invertible matrix P and a diagonal matrix D such that $P^{-1} A P=D$ when this is possible:
a) $A=\left(\begin{array}{ll}3 & 7 \\ 7 & 3\end{array}\right)$
b) $A=\left(\begin{array}{cc}1 & 1 \\ -1 & 3\end{array}\right)$
c) $A=\left(\begin{array}{ll}2 & -4 \\ 3 & -1\end{array}\right)$
d) $A=\left(\begin{array}{lll}4 & 0 & 1 \\ 0 & 5 & 0 \\ 1 & 0 & 4\end{array}\right)$
e) $A=\left(\begin{array}{lll}2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2\end{array}\right)$
f) $A=\left(\begin{array}{lll}2 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 2\end{array}\right)$

Problem 3.

Find the eigenvalues of A, and show that A is diagonalizable:

$$
A=\left(\begin{array}{cccc}
1 & 0 & 0 & -1 \\
0 & 1 & -1 & 0 \\
0 & -1 & 1 & 0 \\
-1 & 0 & 0 & 1
\end{array}\right)
$$

Problem 4.

Use eigenvalues and eigenvalues of A to determine the limit of A^{m} when $m \rightarrow \infty$, if the limit exists. What can you say about the limit of $A^{m} \cdot \mathbf{v}_{0}$, the equilibrium state of the Markov chain with transition matrix A ?
a) $A=\left(\begin{array}{ll}0.30 & 0.15 \\ 0.70 & 0.85\end{array}\right)$
b) $A=\left(\begin{array}{ll}0.86 & 0.42 \\ 0.14 & 0.58\end{array}\right)$
c) $A=\left(\begin{array}{lll}0.75 & 0.02 & 0.10 \\ 0.20 & 0.90 & 0.20 \\ 0.05 & 0.08 & 0.70\end{array}\right)$
d) $A=\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right)$
e) $A=\left(\begin{array}{ccc}0.2 & 0.4 & 0 \\ 0.8 & 0.4 & 0.7 \\ 0 & 0.2 & 0.3\end{array}\right)$

Hint: To find eigenvalues and eigenvectors in c) and e), you can use a tool such as https://www.wolframalpha. com/. For example, Eigenvalues of $[[0.75,0.02,0.10],[0.2,0.9,0.2],[0.05,0.08,0.7]]$ would give eigenvalues and eigenvectors in c).

Problems from the Workbook

Exam problems
Midterm exam GRA6035 10/2019 Question 1-5, 8
Workbook [W] 4.1-4.12 (full solutions in the workbook)
4.13-4.15 (optional, harder problems)

Answers to Key Problems

Problem 1.

a) Eigenvalues $\lambda_{1}=-4, \lambda_{2}=10$ and eigenvectors $E_{-4}=\operatorname{span}\left(\mathbf{v}_{1}\right)$ and $E_{10}=\operatorname{span}\left(\mathbf{v}_{2}\right)$, where $\mathbf{v}_{1}=\left(\begin{array}{ll}-1 & 1\end{array}\right)^{T}$ and $\mathbf{v}_{2}=\left(\begin{array}{ll}1 & 1\end{array}\right)^{T}$
b) Eigenvalues $\lambda_{1}=\lambda_{2}=2$ and eigenvectors $E_{2}=\operatorname{span}\left(\mathbf{v}_{1}\right)$, where $\mathbf{v}_{1}=\left(\begin{array}{ll}1 & 1\end{array}\right)^{T}$
c) No eigenvalues or eigenvectors
d) Eigenvalues $\lambda_{1}=\lambda_{2}=5, \lambda_{3}=3$ and eigenvectors $E_{5}=\operatorname{span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right)$ and $E_{3}=\operatorname{span}\left(\mathbf{v}_{3}\right)$, where $\mathbf{v}_{1}=$ $\left(\begin{array}{lll}0 & 1 & 0\end{array}\right)^{T}, \mathbf{v}_{2}=\left(\begin{array}{lll}1 & 0 & 1\end{array}\right)^{T}$ and $\mathbf{v}_{3}=\left(\begin{array}{lll}-1 & 0 & 1\end{array}\right)^{T}$
e) Eigenvalues $\lambda_{1}=\lambda_{2}=1, \lambda_{3}=4$ and eigenvectors $E_{1}=\operatorname{span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right)$ and $E_{3}=\operatorname{span}\left(\mathbf{v}_{3}\right)$, where $\mathbf{v}_{1}=$ $\left(\begin{array}{lll}-1 & 1 & 0\end{array}\right)^{T}, \mathbf{v}_{2}=\left(\begin{array}{lll}-1 & 0 & 1\end{array}\right)^{T}$ and $\mathbf{v}_{3}=\left(\begin{array}{lll}1 & 1 & 1\end{array}\right)^{T}$
f) Eigenvalues $\lambda_{1}=\lambda_{2}=\lambda_{3}=2$ and eigenvectors $E_{2}=\operatorname{span}\left(\mathbf{v}_{1}\right)$, where $\mathbf{v}_{1}=\left(\begin{array}{lll}1 & 0 & 0\end{array}\right)^{T}$

Problem 2.

a) Yes, with $P=\left(\begin{array}{cc}-1 & 1 \\ 1 & 1\end{array}\right), D=\left(\begin{array}{cc}-4 & 0 \\ 0 & 10\end{array}\right)$
b) No
c) No
d) Yes, with $P=\left(\begin{array}{ccc}0 & 1 & -1 \\ 1 & 0 & 0 \\ 0 & 1 & 1\end{array}\right), D=\left(\begin{array}{lll}5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 3\end{array}\right)$
e) Yes, with $P=\left(\begin{array}{ccc}-1 & -1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1\end{array}\right), D=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 4\end{array}\right) \quad$ f) No

Problem 3.

The eigenvalues of A are $\lambda_{1}=\lambda_{2}=0$ and $\lambda_{3}=\lambda_{4}=2$.

Problem 4.

In all questions except d), the limit of $A^{m} \mathbf{v}$ is the vector \mathbf{v} given below, and the limit of A^{m} is a matrix with the vector \mathbf{v} in each column. In question d), A^{m} does not converge to a limit.
a) $\mathbf{v}=\binom{3 / 17}{14 / 17}$.
b) $\mathbf{v}=\binom{3 / 4}{1 / 4}$
c) $\mathbf{v}=\left(\begin{array}{c}2 / 15 \\ 10 / 15 \\ 3 / 15\end{array}\right)$
d) None
e) $\mathbf{v}=\left(\begin{array}{c}7 / 25 \\ 14 / 25 \\ 4 / 25\end{array}\right)$

