All material covered by the lectures and problems is part of the curriculum for GRA 6035 Mathematics, and is relevant for the final exam. All material covered by Lecture 1-6 and all problems corresponding to these lectures is relevant for the midterm exam. The list of sections in [ME] and [FMEA] in the Lecture Plan below is indicative of the curriculum of the course.
Date: | Topic: | Reading: | Problems: |
Thu Aug 21 0800-1045 : C1-060 |
Lecture
1 Linear systems and Gaussian Elimination |
[ME] 6.1, (6.2), 7.1 - 7.4, (7.5) [LSGE] 1 - 3, [FMEA] 1.3 - 1.4 |
Workbook Lecture 1 |
Thu Aug 28 0800-1045 : C1-060 |
Lecture
2 Matrices and Matrix Algebra |
[ME] 8.1
- 8.4, (8.5 - 8.6), 9.1 - 9.2, (9.3), 26.1 - 26.3, (26.4), 26.5 [FMEA] 1.1, 1.9 |
Workbook Lecture 2 |
Mon Sep 01 1700-1945 : C2-020/045 |
Problem
Session Lecturer + TAs |
||
Thu Sep 04 0800-1045 : C1-000 |
Lecture
3B (B = Business except major in finance) Vectors and Linear Independence |
[ME] 10.1 - 10.3, (10.4 - 10.7),
11.1 [FMEA] 1.2 |
Workbook Lecture 3 |
Mon Sep 08 0800-1045 : C1-060 |
Lecture
3F (F = Financial Economics + Business with major in finance) Vectors and Linear Independence |
[ME] 10.1 - 10.3, (10.4 - 10.7),
11.1 [FMEA] 1.2 |
Workbook Lecture 3 |
Mon Sep 08 1700-1945 : C2-010/20/45 |
Problem
Session TAs |
|
|
Thu Sep 11 0800-1045 : C1-060 |
Lecture 4B Eigenvalues and Diagonalization |
[ME] 23.1 - 23.4,
23.6 -23.7, (23.9) [FMEA] 1.5 - 1.6 |
Workbook Lecture 4 |
Mon Sep 15 0800-1045 : C1-060 |
Lecture 4F Eigenvalues and Diagonalization |
[ME] 23.1 - 23.4,
23.6 -23.7, (23.9) [FMEA] 1.5 - 1.6 |
Workbook Lecture 4 |
Mon Sep 15 1700-1945 :C2-020/45, B2-070 |
Problem
Session TAs |
||
Thu Sep 18 0800-1045 : C1-060 |
Lecture 5B - Note: How to compute all principal minors Quadratic Forms and Definiteness |
[ME] 13.1
- 13.5,
16.1 - 16.4, 23.8 [FMEA] 1.7 - 1.8 |
Workbook Lecture 5 |
Mon Sep 22 0800-1045 : C1-060 |
Lecture 5F - Note: How to compute all principal minors Quadratic Forms and Definiteness |
[ME] 13.1 - 13.5,
16.1 - 16.4, 23.8 [FMEA] 1.7 - 1.8 |
Workbook Lecture 5 |
Mon Sep 22 1700-1945 : C1-060 |
Plenary
Session - Note: How to compute eigenvalues Selected problems from Lecture 1-4 |
Problems: 1.4, 1.15, 2.18, 2.20c, 3.4, 3.5, 3.14, 3.15, 4.6, 4.7, 4.8, 4.9, 4.11 |
|
Thu Sep 25 0800-1045 : C1-060 |
Lecture 6B - Note: An example Unconstrained Optimization |
[ME] 14.1
- 14.4,
14.8, 17.1 - 17.5, 30.1 [FMEA] 3.1 - 3.2, 3.4 |
Workbook Lecture 6 |
Mon Sep 29 0800-1045 : C1-060 |
Lecture 6F - Note: An example Unconstrained Optimization |
[ME] 14.1 - 14.4,
14.8, 17.1 - 17.5, 30.1 [FMEA] 3.1 - 3.2, 3.4 |
Workbook Lecture 6 |
Mon Sep 29 1700-1945 : C2-010/20/45 |
Problem
Session TAs |
||
Thu Oct 02 0800-1045 : C1-060 |
Lecture 7B Constrained Optimization and First Order Conditions |
[ME] 14.1 - 14.4,
14.8, 17.1 - 17.5, 30.1 [FMEA] 3.1 - 3.2, 3.4 |
Workbook Lecture 7 |
Mon Oct 06 0800-1045 : C1-060 |
Lecture 7F Constrained Optimization and First Order Conditions |
[ME] 14.1 - 14.4,
14.8, 17.1 - 17.5, 30.1 [FMEA] 3.1 - 3.2, 3.4 |
Workbook Lecture 7 |
Mon Oct 06 1700-1945 : C2-010/20/45 |
Problem
Session Lecturer + TAs |
||
Thu Oct 09 0800-1045 : C1-060 |
Lecture 8B - Notes: Proof of SOC, Alternative method for NDCQ Constrained Optimization and Second Order Conditions |
[ME] 19.1, (19.4) [FMEA] 3.6 |
Workbook Lecture 8 |
Fri Oct
10 1500-1600 |
Midterm exam 10/10/2014 - Solutions Relevant material for Midterm: Lecture 1-6 and Exercise problems from these lectures |
||
Mon Oct 13 0800-1045 : C1-010 |
Lecture 8F - Notes: Proof of SOC, Alternative method for NDCQ Constrained Optimization and Second Order Conditions |
[ME] 19.1, (19.4) [FMEA] 3.6 |
Workbook Lecture 8 |
Mon Oct 13 1700-1945 : C1-060 |
Plenary
Session Selected problems from Lecture 5-8 |
Problems: 5.5, 6.8, 6.20, 6.26, 7.7, 7.8, 7.9, 7.10, 8.6, 8.7, 8.8, 8.9, 8.13 |
|
Thu Oct 16 0800-1045 : C1-060 |
Lecture
9B Envelope Theorems and Bordered Hessians |
[ME] 19.2 - 19.3,
(19.4 - 19.6) [FMEA] 2.2 - 2.3 |
Workbook Lecture 9 |
Mon Oct 20 0800-1045 : C1-060 |
Lecture
9F Envelope Theorems and Bordered Hessians |
[ME] 19.2 - 19.3, (19.4 - 19.6) [FMEA] 2.2 - 2.3 |
Workbook Lecture 9 |
Mon Oct 20 1700-1945 : C2-010/20/45 |
Problem
Session TAs |
||
Mon Oct 27 1700-1945 : C1-050 |
Lecture
10F (Pål Lauritzen) - Notes: Review of integration First Order Differential Equations |
[ME] 24.1 - 24.2, (24.4 - 24.6) [FMEA] 5.1 - 5.3 |
Workbook Lecture 10 |
Mon Oct 27 1700-1945 : C2-010/20/45 |
Problem
Session TAs |
||
Thu Oct 30 0800-1045 : C1-060 |
Lecture
10B - Notes: Review of integration First Order Differential Equations |
[ME] 24.1 - 24.2,
(24.4 - 24.6) [FMEA] 5.1 - 5.3 |
Workbook Lecture 10 |
Mon Nov 03 0800-1045 : C1-060 |
Lecture
11F Second Order Differential Equations |
[ME] 24.1 - 24.3, (24.4 - 24.6) [FMEA] 5.4 - 5.7, 6.1 - 6.4 |
Workbook Lecture 11 |
Mon Nov 03 1700-1945 : C2-010/20/45 |
Problem
Session TAs |
||
Thu Nov 06 0800-1045 : C1-060 |
Lecture
11B Second Order Differential Equations |
[ME] 24.1 - 24.3,
(24.4 - 24.6) [FMEA] 5.4 - 5.7, 6.1 - 6.4 |
Workbook Lecture 11 |
Mon Nov 10 0800-1045 : C1-060 |
Lecture
12F Difference Equations |
[ME]
23.2 [FMEA] 6.1 - 6.4, 11.1 - 11.4 |
Workbook Lecture 12 |
Mon Nov 10 1700-1945 : C2-010/20/45 |
Problem
Session TAs |
||
Thu Nov 13 0800-1045 : C1-060 |
Lecture
12B Difference Equations |
[ME]
23.2 [FMEA] 6.1 - 6.4, 11.1 - 11.4 |
Workbook Lecture 12 |
Mon Nov 17 1700-1945 : C1-010 |
Lecture 13 Part I: Review with Exam Problems 1) Matrix methods 2) Unconstrained optimization |
Final
exam 12/2013 Problem 1-2 Final exam 12/2013 Solutions |
|
Thu Nov 20 0800-1045 : A1-040 |
Lecture 13 Part II: Review
with Exam Problems 3) Constrained optimization 4) Difference/differential equations |
Final exam 12/2013 Problem
3-4 Final exam 12/2013 Solutions |
|
Dec
12 0900-1200 |
Final exam 12/12/2014 - Solutions Relevant material for final exam: All lectures and all exercise problems. |
||
Apr 27, 2015 0900-1000 |
Midterm exam 27/04/2015 - Solutions Relevant material for Midterm: Lecture 1-6 and Exercise problems from these lectures |
||
May 15, 2015 0900-1200 |
Final exam 15/05/2015 - Solutions Relevant material for final exam: All lectures and all exercise problems. |