lat

oy m

ld

ie be

problems

Problem 5.1 Find the stationary points and classify their type:

a)
$$f(x, y) = x^4 + x^2 - 6xy + 3y^2$$

b)
$$f(x, y) = x^2 - 6xy + 2y^2 + 10x + 2y$$

c)
$$f(x, y) = xy^2 + x^3y - xy$$

d)
$$f(x, y) = 3x^4 + 3x^2y - y^3$$

e)
$$f(x, y) = e^{xy}$$

f)
$$f(x, y) = \ln(x^2 + y^2 + 1)$$

g)
$$f(x, y, z) = x^2 + 6xy + y^2 - 3yz + 4z^2 - 10x - 5y - 21z$$

Problem 5.2 Find the stationary points and classify their type:

a)
$$f(x, y) = e^{xy}$$

b)
$$f(x, y) = \ln(x^2 + y^2 + 1)$$

Problem 5.3 Determine whether the function is convex or concave:

a)
$$f(x, y) = x^4 + x^2 - 6xy + 3y^2$$

b)
$$f(x, y) = x^2 - 6xy + 2y^2 + 10x + 2y$$

c)
$$f(x, y) = xy^2 + x^3y - xy$$

d)
$$f(x, y) = 3x^4 + 3x^2y - y^3$$

e)
$$f(x, y) = e^{xy}$$

f)
$$f(x, y) = \ln(x^2 + y^2 + 1)$$

g)
$$f(x, y, z) = x^2 + 6xy + y^2 - 3yz + 4z^2 - 10x - 5y - 21z$$

Problem 5.4 Consider the subset $D = \{(x, y) : x \ge 0, y \ge 0, xy \le 1\}$ of \mathbb{R}^2 .

- a) Sketch the set D
- b) Describe the boundary points of D.
- c) Determine if D is open or closed.
- d) Determine if D is a convex set.

Problem 5.5 Let f be the function given by

$$f(x, y) = -6x^{2} + (2a + 4)xy - y^{2} + 4ay$$

where x, y are variables and a is a parameter. Determine the values of a such that f is a concave function.

Problems

Problem 6.1 Sketch each set and determine if it is open, closed, bounded or

a)
$$\{(x, y) : x^2 + y^2 < 1\}$$

b)
$$\{(x, y) : x^2 + y^2 \ge 2\}$$

c)
$$\{(x, y) : xy \le 1\}$$

d)
$$\{(x, y, z) : x \ge 0, y \ge 0, z \ge 0\}$$

e)
$$\{(x, y) : x \ge 0, y \ge 0, xy \ge 1\}$$
 f) $\{(x, y) : \ln(x) + \ln(y) \le 5\}$

f)
$$\{(x, y) : \ln(x) + \ln(y) \le 5\}$$

Problem 6.2 Determine whether the subset $D = \{(x, y, z, w) : xw - yz \le -2\} \subseteq \mathbb{R}^4$ is compact.

Problem 6.3 Solve the following optimization problems:

a)
$$\max f(x, y) = xy$$
 subject to $2x + 3y = 12$

b)
$$\max f(x, y) = x^2 y$$
 subject to $2x^2 + 5y^2 = 15$

c)
$$\max f(x, y) = xy$$
 subject to $x^2 + y^2 \le 1$

d)
$$\min f(x, y, z) = x^2 + y^2 + z^2$$
 subject to $2x^2 + 6y^2 + 3z^2 \ge 36$

Problem 6.4 Solve the Lagrange problem

max
$$f(x, y, z) = xyz$$
 subject to
$$\begin{cases} x^2 + y^2 = 1 \\ x + z = 1 \end{cases}$$

Problem 6.5 Solve the Kuhn-Tucker problem

$$\max f(x, y, z) = xyz \text{ subject to } \begin{cases} x + y + z \le 1 \\ x \ge 0 \\ y \ge 0 \\ z \ge 0 \end{cases}$$

Problem 6.6 We consider the Kuhn-Tucker problem $\max f(x, y, z) = x^2yz$ subject to $x^2 + 2y^2 - 2z^2 \le 32$.

- a) Solve the Kuhn-Tucker conditions.
- b) Does the maximum problem have a solution?

Problem 6.7 We consider the following optimization problem:

$$\max \ln (x^2 y) - x - y \text{ subject to } \begin{cases} x + y \ge 4 \\ x \ge 1 \\ y \ge 1 \end{cases}$$

Sketch the set of admissible points, and solve the optimization problem.