Problems

Problem 2.1 Show the vector $\mathbf{u} = (1, 3)$, $\mathbf{v} = (4, -1)$, and $\mathbf{w} = (-2, 2)$ in a figure, and use the geometric construction to find $\mathbf{u} + \mathbf{v}$, $\mathbf{u} - \mathbf{w}$, and $-2\mathbf{w}$. Then compute these vectors using coordinates.

Problem 2.2 Let $\mathbf{u} = (1, 3)$, $\mathbf{v} = (4, -1)$, and $\mathbf{w} = (-2, 2)$. Compute the following:

- a) u
- b) $\|v\|$ c) $\|w\|$
- d) u·v
- e) $\mathbf{u} \cdot \mathbf{w}$
- f) $\mathbf{v} \cdot \mathbf{w}$

Problem 2.3 Let $\mathbf{u} = (1, 3)$, $\mathbf{v} = (4, -1)$, and $\mathbf{w} = (-2, 2)$. Compute the following:

- a) $Proj_{\mathbf{u}}(\mathbf{v})$
- b) $Proj_{\mathbf{u}}(\mathbf{w})$ c) $Proj_{\mathbf{v}}(\mathbf{w})$
- d) $Proj_{\mathbf{v}}(\mathbf{u})$

Problem 2.4 Express the vector $\mathbf{w}=(8,9)$ as a linear combination of $\mathbf{v}_1=(2,5)$ and $\mathbf{v}_2 = (-1, 3)$, if possible.

Problem 2.5 Find a parametric description of the following lines and planes:

- a) The line through (4, 1) and (1, -3) in \mathbb{R}^2
- b) The line in \mathbb{R}^2 with equation 2x + 3y = 1
- c) The line through (1, 1, -1) and (2, 0, 3) in \mathbb{R}^3
- d) The plane through (1, 1, -1), (0, 3, 1) and (2, 0, 3) in \mathbb{R}^3
- e) The plane in \mathbb{R}^3 with equation x + 2y + 3z = 6

Problem 2.6 What is the distance from the origin to a point in \mathbb{R}^3 satisfying the equation $x^{2} + y^{2} + z^{2} = 16$?

Problem 2.7 Let \mathbf{u} , \mathbf{v} , and \mathbf{w} be vectors of length $\|\mathbf{u}\| = \|\mathbf{v}\| = \|\mathbf{w}\| = 2$ with

$$\mathbf{u} \cdot \mathbf{v} = 1$$
, $\mathbf{u} \cdot \mathbf{w} = -2$, $\mathbf{v} \cdot \mathbf{w} = 3$

What is the length of the vector $\mathbf{u} - \mathbf{v} + 2\mathbf{w}$?

Problem 2.8 Determine whether the following pairs of vectors are linearly independent:

a)
$$\mathbf{v} = (-1, 2), \ \mathbf{w} = (3, -6)$$
 b) $\mathbf{v} = (2, -1), \ \mathbf{w} = (3, 4)$

b)
$$\mathbf{v} = (2, -1), \ \mathbf{w} = (3, 4)$$

Problems

Problem 3.1 Let A, B, and C be the 3×3 matrices

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & -1 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & 1 & 1 \\ 0 & -1 & 1 \\ 0 & 0 & 2 \end{pmatrix}$$

Compute the following matrix expressions:

- a) AB
- b) *BA*
- c) A^2

- d) B^2
- e) $(A + B)^2$
- f) ABC

Problem 3.2 Give an example of a symmetric and a nonsymmetric 4×4 matrix.

Problem 3.3 Let A, B, and C be any $n \times n$ matrices. Simplify the following matrix expressions:

- a) AB(BC CB) + (CA AB)BC + CA(A B)C
- b) $(A B)(C A) + (C B)(A C) + (C A)^2$

Problem 3.4 We consider a linear system Ax = b, where

$$A = \begin{pmatrix} 3 & 1 & 5 \\ 5 & -3 & 2 \\ 4 & -3 & -1 \end{pmatrix}, \quad \mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} 4 \\ -2 \\ -1 \end{pmatrix}$$

- a) Write out the linear system of equations.
- b) Determine whether A is invertible, and find A^{-1} if it exists.
- c) How many solutions does the linear system have?

Problem 3.5 Compute the matrix A^TA when A is the matrix

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & -1 & 6 & 5 \end{pmatrix}$$

Problem 3.6 Compute |A| using cofactor expansion along the first column, and then along the third row. Compare both the results and the computations.

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 5 & 6 \\ 1 & 0 & 8 \end{pmatrix}$$