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[8.1] MATRIX ALGEBRA 159

x1 by
: and b=] :
X b
.' th x and b are matrices, called column matrices. The r X 1 matrix X contains

ables, and the k X 1 matrix b contains the parameters from the right-hand side
the system. Then, the system of equations can be written as

ayy "t Qi X by

Qij
Ge1 G Xy by

3 Vor simply as

4 | where Ax refers to the matrix product of the k X » matrix A with the n X 1 matrix
| ¢ This product is 2 & X 1 matrix, which must be made equal to the k X 1 matrix b.
" Check that carrying out the matrix multiplication in Ax = b and applying the
~ definition of equality of matrices gives back exactly the original system of linear
. equations. The matrix notation is much more compact than writing out arrays of
" coefficients, and, as we shall see, it suggests how to find the solution to the system
by analogy with the one-variable case.

EXERCISES

301 (0 1 -1 !
-1 2)' B“(4 -1 2)’ C‘(a —1)'
(21 (1
D—(l 1), and E-(_1).

a) Compute each of the following matrices if it is defined:

A+B, - 38, DC, B,
C +D, = AB, CE  -D,
B+C - CA,  EC,  (CA),

b) Verify that (DA)T = ATD”.
¢) Verify thar CD # DC.




160  MATRIX ALGEBRA [8]

Q!.Z Check that

2 31 4
(0 -1 2 1
5 060

Note that the reverse product is not defined. P
8.3 Show that if AB is defined, then BTAT is defined but ATB” need not be defineq.
8.4 If you choose four numbers at random for the entries of a 2 X 2 matrix A, and e
others for another 2 X 2 matrix B, AB will probably not equal BA. Carry aut'l
~=w,_ procedure a few times. I
8.5) It sometimes happens that AB = BA.
a) Check this forA = (f ;) and B = _i _i .
b) Show that if B is a scalar multiple of the 2 X 2 identity matrix, then AR BA
all 2 X 2 matrices A. i

8.2 SPECIAL KINDS OF MATRICES

Special problems use special kinds of matrices. In this section we describe somg
of the important classes of k X n matrices which arise in economic analysis,

Square Matrix. k = n, that is, equal number of rows and columng$;
Column Matrix. n = 1, that is, one column. For example,

() = )

[

Row Matrix. k =1, that is, one row. For example,
(2 1 0) and (2 3).

Diagonal Matrix. k = n and aj; = 0fori # j, that is, a square.
matrix in which all nondiagonal entries are 0. Fo |
example,

10

(g g) and (0 2

00
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172  MATRIX ALGEBRA [8]

Theorem 8.12 Any matrix A can be written as a product
A=F - Fp U

where the F;’s are elementary matrices and U is in reduced row echelon formy:
When A is nonsingular, U = [ and A =Fy -+ Fp. i

EXERCISES

8.15

-1 ) 110\ S5 0 =5
V'e(d ) me (001) (305}
-1 10 =5 1 %5

8.16 Verify that matrix (4) is the inverse of matrix (3) by direct matrix multiplication]
8.17 Suppose that @ = 0 but ¢ # 0 in (5). Show that one obtains the same inversel

for A.
@ Show by simple matrix multiplication that, if ad — bc # 0,

1 (d —b)
ad —be \ —¢ a

is both a left and a right inverse of A.
8.19 Use the technique of Example 8.3 to either invert each of the following matrices

prove that it is singular:

o(11) (2 o5

2 4 0 1 0
d)(4 63), e)( 26),
6 —-10 0 —4 -3 9

6 0 5

21 8 17

) 12 -4 13

3 -2 2

@ Tnvert the coefficient matrix to solve the following systems of equations:

ZX1+ X2 = 4
2 +x =5
Laeed b)  6xy+ 2xy + 6x3 =20

Qa
X t+x=73
L —hx; — 3+ 03 = 3




elon form.

3)

tiplication.
1e inverse (7)

1g matrices or

[8.4] ALGEBRA OF SQUARE MATRICES

2 + 4x,
C) 4X] + 6X2 + 3X3
—6x; — 10x, = —6.

Show that if A is n X n and AB = BA, then B is also n X n.

| FordA = (f :) compute A%, A*, and 472,

Verify the statements about the inverses of elementary matrices in the last sentence

of Example 8.5.

a) Use Theorem 8.8 to prove that a 2 X 2 lower- or upper-triangular matrix is
invertible if and only if each diagonal entry is nonzero.

b) Show that the inverse of a 2 X 2 lower triangular matrix is lower triangular.

¢) Show that the inverse of a 2 X 2 upper triangular mairix is upper triangular.

a) Prove Theorem 8.10.

b) Generalize part c to the case of the product of k nonsingular matrices.

¢) Show by example that if A and B are invertible, A + B need not be invertible.

d) Show that, when it exists, (4 + B)~" is generally not A~! + B!,

Prove Theorem 8.11.

a) Prove that (AB) = A*B* if AB = BA.

b) Show that (ABY* # A*B* in general.

c) Conclude that (A + B)? does not equal A2 + 248 + B? unless AB = BA.

What is the inverse of the r X n diagonal matrix

d 0 0
0 d 0

0o 0 0 - 4,

Show that the inverse of a2 X 2 symmetric matrix § is symmetric.

Show that the inverse of an n X n upper-triangular matrix U is upper-triangular. Can
Yyou find an easy argument to extend this result to lower-triangular matrices?

[Hint: There are a number of ways to de the first part. You can use the inversion
method described in the proof of Theorem 8.7, keeping track of the status of the Os
below the diagonal. Or, you can show by direct caleulation that B = [ implies that
B has only 0s below the diagonal. ]

Show that for any permutation matrix P, P~! = pT.

Use Gauss-Jordan elimination to derive a criterion for the invertibility of 3 X 3
matrices similar to the ad — bc criterion for the 2 X 2 case. For simplicity, assume
that no row interchanges are needed in the elimination process.

The definitions of left inverse and right inverse apply to nonsquare matrices. Use the
ideas in the proof of Theorem 8.7 to prove the following statements for an m X n
matrix A, where m # n.

a) A nonsquare matrix cannot have both a left and a i ght inverse.

b) If A has one left ( right) inverse, it has infinitely many.

¢) m < n, A has a right inverse if and only if rank A = .

d) If m > n, A has a left inverse if and only if rank A = n,
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-2x

Scalar multiplication in the plane.

There are distributive laws in Euclidean spaces as well. It is easy to i@
vector addition distributes over scalar multiplication and that scalar multiplicg
distributes over vector addition: ]

(a) (r + syu = ru + su for all scalars r, s and vectors u.
(6) r(u+v) = ru + rv for all scalars r and vectors u, v.

Any set of objects with a vector addition and scalar multiplication W
satisfies the rules we have outlined in this section is called a vector space!

elements of the set are called vectors. (The operations of vector addition an
multiplication are the operations of matrix addition and scalar multipli
matrices, respectively, applied to 1 X n or n X 1 matrices, as defined in

1 of Chapter 8. The scalar product of the next section will also correspond
matrix operation.) 5

EXERCISES
N S
10.5) Letu = (1,2),v=(01),w=(1,~-3),x=(,20),and z = (0, 1, 1). Com8
the following vectors, whenever they are defined: u + v, —4w, u + z, 3z, 2v, 67
u—v,3x+z -2x, w + 2x. '
10.6 Carry out all of the possible operations in Exercise 10.5 geometrically.
10.7 Show that —u = (—1)u.
10.8 Prove the distributive laws for vectors in R".

10.9  Use Figure 10.12 to give a geometric proof of the associative law for vector addil
ut(v+w)=(u+v)+w '




