Key Problems

Problem 1.

Show that the matrix A is a Hermitian matrix, and find a unitary matrix U such that $U^{*} A U=D$ is diagonal when

$$
A=\left(\begin{array}{ccc}
3 & 2-i & -3 i \\
2+i & 0 & 1-i \\
3 i & 1+i & 0
\end{array}\right)
$$

Problem 2.

Use Python to find the eigenvalues and eigenvectors of the following matrices. Then check whether the matrices are irreducible, and if so, find the dominant eigenvector λ and a positive eigenvector \mathbf{v} :
a) $A=n p \cdot \operatorname{array}([[0,0,1 / 3,1 / 2],[1 / 2,0,1 / 3,1 / 2],[1 / 2,1,0,0],[0,0,1 / 3,0]])$
b) $B=n p \cdot \operatorname{array}([[0,3,0,0,1,2],[3,0,2,2,2,1],[6,4,0,2,1,1],[3,1,1,0,2,2]$, $[2,1,2,4,0,2],[1,2,2,4,4,0]])$

Problem 3.

Write a Python program the defines a function Frobenius (matrix) that has a square non-negative irreducible matrix as input, and a positive eigenvector as output. Check that the function works by using it on the following matrices:
a) $A=n p \cdot \operatorname{array}([[0,0,1 / 3,1 / 2],[1 / 2,0,1 / 3,1 / 2],[1 / 2,1,0,0],[0,0,1 / 3,0]])$
b) $B=n p \cdot \operatorname{array}([[0,3,0,0,1,2],[3,0,2,2,2,1],[6,4,0,2,1,1],[3,1,1,0,2,2]$, $[2,1,2,4,0,2],[1,2,2,4,4,0]])$

Problem 4.

We consider an $n \times n$ Leslie matrix A given by

$$
A=\left(\begin{array}{cccccc}
f_{1} & f_{2} & f_{3} & \ldots & f_{n-1} & f_{n} \\
p_{1} & 0 & 0 & \ldots & 0 & 0 \\
0 & p_{2} & 0 & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & p_{n-1} & 0
\end{array}\right)
$$

where $0<p_{i}<1$ and $f_{i} \geq 0$ for all i, and $f_{n}>0$.
a) Find the characteristic equation of A in the case $n=4$.
b) Explain why the condition $f_{n}>0$ is necessary for A to be an irreducible non-negative matrix.

Problem 5.

A population of rattus norvegicus is divided into $n=21$ age groups (time measured in months), and the growth of the population is given by the Leslie matrix A with parameters

```
f = np.array([0,0,0.3964,1.4939,2.1777,2.5250,2.6282, 2.6749,2.6018,2.4419,2.1865,1.9044,
    1.7259,1.4918,1.2415,0.9522,0.7141,0.4618,0.2518, 0.0901,0.0035]
p = np.array([0.94697,0.99665,0.99926,0.99899,0.99863, 0.99817,0.99753,0.99667,0.99553,
    0.99399,0.99196,0.98926,0.98572,0.98107,0.97511, 0.96748, 0.95797,0.94631,
    0.93247,0.91649])
```

a) Write a python program that defines a function Leslie (f, p) that has one-dimensional arrays f and p of size n and $n-1$ as inputs, and the corresponding Leslie matrix A as output.
b) Find the dominant eigenvalue and a Frobenius vector of A.
c) Plot the population growth of all age groups of this population when the initial population has 5 inviduals in each age group.

Answers to Key Problems

Problem 1.

$$
D=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 6 & 0 \\
0 & 0 & -2
\end{array}\right), \quad U=\left(\begin{array}{ccc}
-1 / \sqrt{7} & (1-21 i) / \sqrt{728} & (1+3 i) / \sqrt{40} \\
(1+2 i) / \sqrt{7} & (6-9 i) / \sqrt{728} & (-2-i) / \sqrt{40} \\
1 / \sqrt{7} & 13 / \sqrt{728} & 5 / \sqrt{40}
\end{array}\right)
$$

Problem 2.

Both matrices are irreducible, and we find
a) $\lambda=1$ and $\mathbf{v}=(0.194,0.290,0.387,0.129)$
b) $\lambda=9.976$ and $\mathbf{v}=(0.108,0.158,0.197,0.146,0.178,0.212)$

Any positive scalar multiple of these eigenvectors can be used (we have chosen state vectors, where the sum of the components are one).

Problem 4.

a) $\lambda^{4}-f_{1} \lambda^{3}-p_{1} f_{2} \lambda^{2}-p_{1} p_{2} f_{3} \lambda-p_{1} p_{2} p_{3} f_{4}=0$
b) In the graph of A, we have arrows $1 \rightarrow 2 \rightarrow 3 \rightarrow \cdots \rightarrow n$ since $p_{1}, p_{2}, \ldots, p_{n-1}>0$, and there is an arrow $n \rightarrow 1$ if $f_{n}>0$. If $f_{n}=0$, there is no path from node n to node 1 .

Problem 5.

Dominant eigenvalue $\lambda=1.562$, see Python runtime example for a Frobenius vector.

