
EVALUATION GUIDELINES - Course paper

ELE 37811
Mathematics - Elective

Department of Economics

Start date: 19.10.2020 Time 09:00

Finish date: 26.10.2020 Time 12:00

For more information about formalities, see examination paper.

Solutions Midterm exam in ELE 3781 Mathematics elective
Deadline October 26th, 2020 at 1200

Question 1.

The python code will give an error message if the argument is not a square matrix. If the matrix A
is square, then the function f will return the trace tr(A) of A when called with the 2-dimensional
NumPy array corresponding to A: If A = (a11) is a 1× 1 matrix, then it will return tr(A) = a11. If
A is an n× n matrix with n > 1, it will use the recursive formula

tr(A) = tr


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann

 = a11 + tr


a22 a23 . . . a2n
a32 a33 . . . a3n
...

...
. . .

...
an2 an3 . . . ann


to compute and return the trace tr(A) = a11 + a22 + · · · + ann of A. This will be done by calling f

recursively.

Question 2.

Using Table A.1 in Eriksen [E] and symmetry, we find that sin(120◦) = sin(60◦) =
√

3/2 and
cos(120◦) = − cos(60◦) = −1/2. In fact, the points with polar coordinates (1, 120◦) and (1, 60◦)
are reflections of each other along the y-axis, and this reflection maps (x, y) to (−x, y); see the figure
below where the points are marked in blue and red.

−1 1

−1

1ω = −1/2 + i
√

3/2

ω2 = −1/2− i
√

3/2

(r, θ) = (1, 60◦)

(r, θ) = (1,−60◦)

1

x

y

We have that ω = 1 · (cos 120◦ + i sin(120◦) = −1/2 + i
√

3/2. To express ω2 in this form, we

could use the polar coordinates (1, 240◦) of ω2, and cos(240◦) = cos(−120◦) = cos(120◦) = −1/2
and sin(240◦) = sin(−120◦) = − sin(120◦) = −

√
3/2 to obtain

ω2 = 1 · (cos 240◦ + i sin(240◦) = −1/2− i
√

3/2

Alternatively, we could use multiplication to find ω2:

ω2 = (−1/2 + i
√

3/2)2 = 1/4− 2i
√

3/4 + 3i2/4 = −1/2− i
√

3/2

The complex numbers 1, ω and ω2 are shown on the figure above.

a)

To solve the equation x3 = 1, we write 1 = ei·0
◦

since 1 has polar coordinates (1, 0◦). Let (r, θ)

be the polar coordinates of x, then x3 = r3e3θ, and x3 = 1 can be written

r3e3θ = 1 · ei·0◦ ⇒ r3 = 1 and 3θ = 0◦ + k · 360◦

This gives r = 1 and θ = k · 120◦, and k = 0, 1, 2 give the three distinct solutions of x3 = 1.
Hence the solutions are x = 1, x = ω, and x = ω2 (for k = 0, 1, 2). For the second part, assume
that z∗ is one solution of the equation x3 = −i. Then we have that

(z∗ω)3 = (z∗)3ω3 = −i · 1 = −i, (z∗ω2)3 = (z∗)3ω6 = −i · 1 = −i
Since the third order equation x3 = −i has three complex roots, the roots must be z∗, z∗ω, and
z∗ω2.

b)

1

We have that (2 + i)2 = (4 + 4i− 1) = 3 + 4i, and therefore that

(2 + i)3 = (2 + i)2(2 + i) = (3 + 4i)(2 + i) = 6 + 8i+ 3i+ 4i2 = 2 + 11i

This means that 2 + i is one solution of x3 = 2 + 11i, and by the same argument as in b) it
follows that the three complex solutions of x3 = 2 + 11i are given by (2 + i), (2 + i)ω, and
(2 + i)ω2. We can express (2 + i)ω and (2 + i)ω2 as

(2 + i)(−1/2 + i
√

3/2) = −1− i/2 + i
√

3−
√

3/2 = (−1−
√

3/2) + i(
√

3− 1/2)

(2 + i)(−1/2− i
√

3/2) = −1− i/2− i
√

3 +
√

3/2 = (−1 +
√

3/2) + i(−
√

3− 1/2)

c)

Recall that when a is a real number, we have defined 3
√
a to be the unique real number x such

that x3 = a. There is no definition of this kind for the third root of a complex number a + ib

with b 6= 0. We must therefore interpret 3
√

2 +
√
−121 = 3

√
2 + 11i as any complex solution of

x3 = 2 + 11i, and interpret 3
√

2−
√
−121 = 3

√
2− 11i as any complex solution of x3 = 2− 11i.

According to Cardano’s formula, the solutions of x3 = 15x+ 4 can be written x = u+ v, where
u is a solution of the equation u3 = 2 + 11i and v is a solution of v3 = 2− 11i. We solved the
first equation in c). Using the results we obtained there, we see that the possible values for u
are

u1 = 2 + i, u2 = (−1−
√

3/2) + i(
√

3− 1/2), u3 = (−1 +
√

3/2) + i(−
√

3− 1/2)

In a similar way, solve v3 = 2 − 11i to find possible values of v. To compute these solutions,
notice that 2 − 11i = 2 + 11i is the complex conjugate of 2 + 11i. This means that if u is a
solution of u3 = 2 + 11i, then v = u gives

v3 = u3 = u3 = 2 + 11i = 2− 11i

Hence the possible values for v are the complex conjugates of u1, u2, and u3, given by

v1 = u1 = 2−i, v2 = u2 = (−1−
√

3/2)+i(−
√

3+1/2), v3 = u3 = (−1+
√

3/2)+i(
√

3+1/2)

We could also have computed the solutions by multiplying v1 = 2− i with 1, ω, ω2, and we see
that v2 = ω2v1 and v3 = ωv1. Since x = u+ v, we can combine the different possible values for
u and v. But notice that according to the argument behind Cardano’s formula, we must have
u · v = p/3 = 15/3 = 5. This means that we get the solutions

x1 = u1 + v1 = 4

x2 = u2 + v2 = −2−
√

3

x3 = u3 + v3 = −2 +
√

3

since u1 · v1 = (2 + i)(2 − i) = 4 + 1 = 5, and therefore u2v2 = u1ω · v1ω2 = 5ω3 = 5 and
u3v3 = u1ω

2 · v1ω = 5ω3 = 5. The three complex solutions of x3 = 15x+ 4 are therefore

x1 = 4, x2 = −2−
√

3, x3 = −2 +
√

3

d)

Question 3.

See the next page for the python code for the functions rank and pivots. We get the following results
when using these function on the matrices A and B:

rk(A) = 2 and rk(B) = 3a)

The pivot positions of A are (1, 1), (2, 2). The pivot positions of B are (1, 1), (2, 2), (3, 3).b)

2

Midterm-2020-10

October 22, 2020

[1]: # Python code: Gaussian elimination

import numpy as np

[2]: # Elementary row operations

def Rswitch(matrix,i,j):
r = matrix[i-1].copy()
matrix[i-1] = matrix[j-1]
matrix[j-1] = r
return(matrix)

def Rmult(matrix,i,c):
matrix[i-1]=matrix[i-1]*c
return(matrix)

def Radd(matrix,i,j,c):
matrix[j-1]=matrix[j-1] + c*matrix[i-1]
return(matrix)

[3]: # Rank

def rank(matrix):
check the number of rows
if matrix.shape[0]==0:

return(0)
if matrix.shape[1]==0:

return(0)
get the leftmost column, nonzero positions
lcol = matrix[:,0]
nz = np.arange(lcol.size)[lcol != 0]
when zero column, move to next column, if any
if nz.size==0:

return(rank(matrix[:,1:]))
find first non-zero entry in column
p=nz[0]
if p!=0:

1

Rswitch(matrix,1,p+1)
get zeros under the pivot
for r in range(1,lcol.size):

Radd(matrix,1,r+1,-matrix[r,0]/matrix[0,0])
return(1+rank(matrix[1:,1:]))

[4]: # Pivots

def pivots(matrix):
r = rank(matrix)
pivots = []
for i in range(r):

row = matrix[i]
c = np.arange(row.size)[row != 0][0]
pivots.append((i+1,c+1))

return(pivots)

[5]: # Some tests that you can run

A = np.array([[1,1,1,3,-1],[1,2,4,7,3],[2,3,5,10,2]])
B = np.array([[1,3,1],[1,4,3],[2,3,5],[-1,10,2]])

[6]: rank(A)

[6]: 2

[7]: rank(B)

[7]: 3

[8]: pivots(A)

[8]: [(1, 1), (2, 2)]

[9]: pivots(B)

[9]: [(1, 1), (2, 2), (3, 3)]

[]:

2

