EVALUATION GUIDELINES - Course paper

ELE 37811
 Mathematics - Elective

Department of Economics

Start date:	19.10 .2020	Time 09:00
Finish date:	26.10 .2020	Time 12:00

Solutions Midterm exam in ELE 3781 Mathematics elective
 Deadline October 26th, 2020 at 1200

Question 1.

The python code will give an error message if the argument is not a square matrix. If the matrix A is square, then the function f will return the $\operatorname{trace} \operatorname{tr}(A)$ of A when called with the 2 -dimensional NumPy array corresponding to A : If $A=\left(a_{11}\right)$ is a 1×1 matrix, then it will return $\operatorname{tr}(A)=a_{11}$. If A is an $n \times n$ matrix with $n>1$, it will use the recursive formula

$$
\operatorname{tr}(A)=\operatorname{tr}\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right)=a_{11}+\operatorname{tr}\left(\begin{array}{cccc}
a_{22} & a_{23} & \ldots & a_{2 n} \\
a_{32} & a_{33} & \ldots & a_{3 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 2} & a_{n 3} & \ldots & a_{n n}
\end{array}\right)
$$

to compute and return the trace $\operatorname{tr}(A)=a_{11}+a_{22}+\cdots+a_{n n}$ of A. This will be done by calling f recursively.

Question 2.

Using Table A. 1 in Eriksen $[E]$ and symmetry, we find that $\sin \left(120^{\circ}\right)=\sin \left(60^{\circ}\right)=\sqrt{3} / 2$ and $\cos \left(120^{\circ}\right)=-\cos \left(60^{\circ}\right)=-1 / 2$. In fact, the points with polar coordinates $\left(1,120^{\circ}\right)$ and $\left(1,60^{\circ}\right)$ are reflections of each other along the y-axis, and this reflection maps (x, y) to $(-x, y)$; see the figure below where the points are marked in blue and red.

a) We have that $\omega=1 \cdot\left(\cos 120^{\circ}+i \sin \left(120^{\circ}\right)=-1 / 2+i \sqrt{3} / 2\right.$. To express ω^{2} in this form, we could use the polar coordinates $\left(1,240^{\circ}\right)$ of ω^{2}, and $\cos \left(240^{\circ}\right)=\cos \left(-120^{\circ}\right)=\cos \left(120^{\circ}\right)=-1 / 2$ and $\sin \left(240^{\circ}\right)=\sin \left(-120^{\circ}\right)=-\sin \left(120^{\circ}\right)=-\sqrt{3} / 2$ to obtain

$$
\omega^{2}=1 \cdot\left(\cos 240^{\circ}+i \sin \left(240^{\circ}\right)=-1 / 2-i \sqrt{3} / 2\right.
$$

Alternatively, we could use multiplication to find ω^{2} :

$$
\omega^{2}=(-1 / 2+i \sqrt{3} / 2)^{2}=1 / 4-2 i \sqrt{3} / 4+3 i^{2} / 4=-1 / 2-i \sqrt{3} / 2
$$

The complex numbers $1, \omega$ and ω^{2} are shown on the figure above.
b) To solve the equation $x^{3}=1$, we write $1=e^{i \cdot 0^{\circ}}$ since 1 has polar coordinates $\left(1,0^{\circ}\right)$. Let (r, θ) be the polar coordinates of x, then $x^{3}=r^{3} e^{3 \theta}$, and $x^{3}=1$ can be written

$$
r^{3} e^{3 \theta}=1 \cdot e^{i \cdot 0^{\circ}} \Rightarrow r^{3}=1 \text { and } 3 \theta=0^{\circ}+k \cdot 360^{\circ}
$$

This gives $r=1$ and $\theta=k \cdot 120^{\circ}$, and $k=0,1,2$ give the three distinct solutions of $x^{3}=1$. Hence the solutions are $x=1, x=\omega$, and $x=\omega^{2}$ (for $k=0,1,2$). For the second part, assume that z^{*} is one solution of the equation $x^{3}=-i$. Then we have that

$$
\left(z^{*} \omega\right)^{3}=\left(z^{*}\right)^{3} \omega^{3}=-i \cdot 1=-i, \quad\left(z^{*} \omega^{2}\right)^{3}=\left(z^{*}\right)^{3} \omega^{6}=-i \cdot 1=-i
$$

Since the third order equation $x^{3}=-i$ has three complex roots, the roots must be $z^{*}, z^{*} \omega$, and $z^{*} \omega^{2}$.
c) We have that $(2+i)^{2}=(4+4 i-1)=3+4 i$, and therefore that

$$
(2+i)^{3}=(2+i)^{2}(2+i)=(3+4 i)(2+i)=6+8 i+3 i+4 i^{2}=2+11 i
$$

This means that $2+i$ is one solution of $x^{3}=2+11 i$, and by the same argument as in b) it follows that the three complex solutions of $x^{3}=2+11 i$ are given by $(2+i),(2+i) \omega$, and $(2+i) \omega^{2}$. We can express $(2+i) \omega$ and $(2+i) \omega^{2}$ as

$$
\begin{aligned}
& (2+i)(-1 / 2+i \sqrt{3} / 2)=-1-i / 2+i \sqrt{3}-\sqrt{3} / 2=(-1-\sqrt{3} / 2)+i(\sqrt{3}-1 / 2) \\
& (2+i)(-1 / 2-i \sqrt{3} / 2)=-1-i / 2-i \sqrt{3}+\sqrt{3} / 2=(-1+\sqrt{3} / 2)+i(-\sqrt{3}-1 / 2)
\end{aligned}
$$

d) Recall that when a is a real number, we have defined $\sqrt[3]{a}$ to be the unique real number x such that $x^{3}=a$. There is no definition of this kind for the third root of a complex number $a+i b$ with $b \neq 0$. We must therefore interpret $\sqrt[3]{2+\sqrt{-121}}=\sqrt[3]{2+11 i}$ as any complex solution of $x^{3}=2+11 i$, and interpret $\sqrt[3]{2-\sqrt{-121}}=\sqrt[3]{2-11 i}$ as any complex solution of $x^{3}=2-11 i$. According to Cardano's formula, the solutions of $x^{3}=15 x+4$ can be written $x=u+v$, where u is a solution of the equation $u^{3}=2+11 i$ and v is a solution of $v^{3}=2-11 i$. We solved the first equation in c). Using the results we obtained there, we see that the possible values for u are

$$
u_{1}=2+i, \quad u_{2}=(-1-\sqrt{3} / 2)+i(\sqrt{3}-1 / 2), \quad u_{3}=(-1+\sqrt{3} / 2)+i(-\sqrt{3}-1 / 2)
$$

In a similar way, solve $v^{3}=2-11 i$ to find possible values of v. To compute these solutions, notice that $2-11 i=\overline{2+11 i}$ is the complex conjugate of $2+11 i$. This means that if u is a solution of $u^{3}=2+11 i$, then $v=\bar{u}$ gives

$$
v^{3}=\bar{u}^{3}=\overline{u^{3}}=\overline{2+11 i}=2-11 i
$$

Hence the possible values for v are the complex conjugates of u_{1}, u_{2}, and u_{3}, given by $v_{1}=\overline{u_{1}}=2-i, \quad v_{2}=\overline{u_{2}}=(-1-\sqrt{3} / 2)+i(-\sqrt{3}+1 / 2), \quad v_{3}=\overline{u_{3}}=(-1+\sqrt{3} / 2)+i(\sqrt{3}+1 / 2)$
We could also have computed the solutions by multiplying $v_{1}=2-i$ with $1, \omega, \omega^{2}$, and we see that $v_{2}=\omega^{2} v_{1}$ and $v_{3}=\omega v_{1}$. Since $x=u+v$, we can combine the different possible values for u and v. But notice that according to the argument behind Cardano's formula, we must have $u \cdot v=p / 3=15 / 3=5$. This means that we get the solutions

$$
\begin{aligned}
& x_{1}=u_{1}+v_{1}=4 \\
& x_{2}=u_{2}+v_{2}=-2-\sqrt{3} \\
& x_{3}=u_{3}+v_{3}=-2+\sqrt{3}
\end{aligned}
$$

since $u_{1} \cdot v_{1}=(2+i)(2-i)=4+1=5$, and therefore $u_{2} v_{2}=u_{1} \omega \cdot v_{1} \omega^{2}=5 \omega^{3}=5$ and $u_{3} v_{3}=u_{1} \omega^{2} \cdot v_{1} \omega=5 \omega^{3}=5$. The three complex solutions of $x^{3}=15 x+4$ are therefore

$$
x_{1}=4, \quad x_{2}=-2-\sqrt{3}, \quad x_{3}=-2+\sqrt{3}
$$

Question 3.

See the next page for the python code for the functions rank and pivots. We get the following results when using these function on the matrices A and B :
a) $\operatorname{rk}(A)=2$ and $\operatorname{rk}(B)=3$
b) The pivot positions of A are $(1,1),(2,2)$. The pivot positions of B are $(1,1),(2,2),(3,3)$.

Midterm-2020-10

October 22, 2020
[1]:

```
# Python code: Gaussian elimination
import numpy as np
```

[2]:

```
# Elementary row operations
def Rswitch(matrix,i,j):
    r = matrix[i-1].copy()
    matrix[i-1] = matrix[j-1]
    matrix[j-1] = r
    return(matrix)
def Rmult(matrix,i,c):
    matrix[i-1]=matrix[i-1]*c
    return(matrix)
def Radd(matrix,i,j,c):
    matrix[j-1]=matrix[j-1] + c*matrix[i-1]
    return(matrix)
```

[3] :

```
# Rank
def rank(matrix):
    # check the number of rows
    if matrix.shape[0]==0:
        return(0)
    if matrix.shape[1]==0:
        return(0)
    # get the leftmost column, nonzero positions
    lcol = matrix[:,0]
    nz = np.arange(lcol.size) [lcol != 0]
    # when zero column, move to next column, if any
    if nz.size==0:
        return(rank(matrix[:,1:]))
    # find first non-zero entry in column
    p=nz[0]
    if p!=0:
```

 Rswitch(matrix,1,p+1)
 \# get zeros under the pivot
 for \(r\) in range(1,lcol.size):
 Radd (matrix, \(1, r+1,-\operatorname{matrix}[r, 0] / \operatorname{matrix}[0,0])\)
 return(1+rank(matrix[1:, 1:]))
 [4]:

```
# Pivots
def pivots(matrix):
    r = rank(matrix)
    pivots = []
    for i in range(r):
        row = matrix[i]
        c = np.arange(row.size)[row != 0] [0]
        pivots.append((i+1,c+1))
    return(pivots)
```

[5]:

```
# Some tests that you can run
A = np.array([[1,1,1,3,-1],[1,2,4,7,3],[2,3,5,10,2]])
B = np.array([[1,3,1],[1,4,3],[2,3,5],[-1,10,2]])
```

$[8]:[(1,1),(2,2)]$
[9]: pivots(B)
$[9]:[(1,1),(2,2),(3,3)]$
[]: \square

