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Question 1.

The python code will give an error message if the argument is not a square matrix. If the matrix A
is square, then the function f will return the trace tr(A) of A when called with the 2-dimensional
NumPy array corresponding to A: If A = (a11) is a 1× 1 matrix, then it will return tr(A) = a11. If
A is an n× n matrix with n > 1, it will use the recursive formula

tr(A) = tr


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann

 = a11 + tr


a22 a23 . . . a2n
a32 a33 . . . a3n
...

...
. . .

...
an2 an3 . . . ann


to compute and return the trace tr(A) = a11 + a22 + · · · + ann of A. This will be done by calling f

recursively.

Question 2.

Using Table A.1 in Eriksen [E] and symmetry, we find that sin(120◦) = sin(60◦) =
√

3/2 and
cos(120◦) = − cos(60◦) = −1/2. In fact, the points with polar coordinates (1, 120◦) and (1, 60◦)
are reflections of each other along the y-axis, and this reflection maps (x, y) to (−x, y); see the figure
below where the points are marked in blue and red.
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We have that ω = 1 · (cos 120◦ + i sin(120◦) = −1/2 + i
√

3/2. To express ω2 in this form, we

could use the polar coordinates (1, 240◦) of ω2, and cos(240◦) = cos(−120◦) = cos(120◦) = −1/2
and sin(240◦) = sin(−120◦) = − sin(120◦) = −

√
3/2 to obtain

ω2 = 1 · (cos 240◦ + i sin(240◦) = −1/2− i
√

3/2

Alternatively, we could use multiplication to find ω2:

ω2 = (−1/2 + i
√

3/2)2 = 1/4− 2i
√

3/4 + 3i2/4 = −1/2− i
√

3/2

The complex numbers 1, ω and ω2 are shown on the figure above.

a)

To solve the equation x3 = 1, we write 1 = ei·0
◦

since 1 has polar coordinates (1, 0◦). Let (r, θ)

be the polar coordinates of x, then x3 = r3e3θ, and x3 = 1 can be written

r3e3θ = 1 · ei·0◦ ⇒ r3 = 1 and 3θ = 0◦ + k · 360◦

This gives r = 1 and θ = k · 120◦, and k = 0, 1, 2 give the three distinct solutions of x3 = 1.
Hence the solutions are x = 1, x = ω, and x = ω2 (for k = 0, 1, 2). For the second part, assume
that z∗ is one solution of the equation x3 = −i. Then we have that

(z∗ω)3 = (z∗)3ω3 = −i · 1 = −i, (z∗ω2)3 = (z∗)3ω6 = −i · 1 = −i
Since the third order equation x3 = −i has three complex roots, the roots must be z∗, z∗ω, and
z∗ω2.

b)
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We have that (2 + i)2 = (4 + 4i− 1) = 3 + 4i, and therefore that

(2 + i)3 = (2 + i)2(2 + i) = (3 + 4i)(2 + i) = 6 + 8i+ 3i+ 4i2 = 2 + 11i

This means that 2 + i is one solution of x3 = 2 + 11i, and by the same argument as in b) it
follows that the three complex solutions of x3 = 2 + 11i are given by (2 + i), (2 + i)ω, and
(2 + i)ω2. We can express (2 + i)ω and (2 + i)ω2 as

(2 + i)(−1/2 + i
√

3/2) = −1− i/2 + i
√

3−
√

3/2 = (−1−
√

3/2) + i(
√

3− 1/2)

(2 + i)(−1/2− i
√

3/2) = −1− i/2− i
√

3 +
√

3/2 = (−1 +
√

3/2) + i(−
√

3− 1/2)

c)

Recall that when a is a real number, we have defined 3
√
a to be the unique real number x such

that x3 = a. There is no definition of this kind for the third root of a complex number a + ib

with b 6= 0. We must therefore interpret 3
√

2 +
√
−121 = 3

√
2 + 11i as any complex solution of

x3 = 2 + 11i, and interpret 3
√

2−
√
−121 = 3

√
2− 11i as any complex solution of x3 = 2− 11i.

According to Cardano’s formula, the solutions of x3 = 15x+ 4 can be written x = u+ v, where
u is a solution of the equation u3 = 2 + 11i and v is a solution of v3 = 2− 11i. We solved the
first equation in c). Using the results we obtained there, we see that the possible values for u
are

u1 = 2 + i, u2 = (−1−
√

3/2) + i(
√

3− 1/2), u3 = (−1 +
√

3/2) + i(−
√

3− 1/2)

In a similar way, solve v3 = 2 − 11i to find possible values of v. To compute these solutions,
notice that 2 − 11i = 2 + 11i is the complex conjugate of 2 + 11i. This means that if u is a
solution of u3 = 2 + 11i, then v = u gives

v3 = u3 = u3 = 2 + 11i = 2− 11i

Hence the possible values for v are the complex conjugates of u1, u2, and u3, given by

v1 = u1 = 2−i, v2 = u2 = (−1−
√

3/2)+i(−
√

3+1/2), v3 = u3 = (−1+
√

3/2)+i(
√

3+1/2)

We could also have computed the solutions by multiplying v1 = 2− i with 1, ω, ω2, and we see
that v2 = ω2v1 and v3 = ωv1. Since x = u+ v, we can combine the different possible values for
u and v. But notice that according to the argument behind Cardano’s formula, we must have
u · v = p/3 = 15/3 = 5. This means that we get the solutions

x1 = u1 + v1 = 4

x2 = u2 + v2 = −2−
√

3

x3 = u3 + v3 = −2 +
√

3

since u1 · v1 = (2 + i)(2 − i) = 4 + 1 = 5, and therefore u2v2 = u1ω · v1ω2 = 5ω3 = 5 and
u3v3 = u1ω

2 · v1ω = 5ω3 = 5. The three complex solutions of x3 = 15x+ 4 are therefore

x1 = 4, x2 = −2−
√

3, x3 = −2 +
√

3

d)

Question 3.

See the next page for the python code for the functions rank and pivots. We get the following results
when using these function on the matrices A and B:

rk(A) = 2 and rk(B) = 3a)

The pivot positions of A are (1, 1), (2, 2). The pivot positions of B are (1, 1), (2, 2), (3, 3).b)
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[1]: # Python code: Gaussian elimination

import numpy as np

[2]: # Elementary row operations

def Rswitch(matrix,i,j):
r = matrix[i-1].copy()
matrix[i-1] = matrix[j-1]
matrix[j-1] = r
return(matrix)

def Rmult(matrix,i,c):
matrix[i-1]=matrix[i-1]*c
return(matrix)

def Radd(matrix,i,j,c):
matrix[j-1]=matrix[j-1] + c*matrix[i-1]
return(matrix)

[3]: # Rank

def rank(matrix):
# check the number of rows
if matrix.shape[0]==0:

return(0)
if matrix.shape[1]==0:

return(0)
# get the leftmost column, nonzero positions
lcol = matrix[:,0]
nz = np.arange(lcol.size)[lcol != 0]
# when zero column, move to next column, if any
if nz.size==0:

return(rank(matrix[:,1:]))
# find first non-zero entry in column
p=nz[0]
if p!=0:
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Rswitch(matrix,1,p+1)
# get zeros under the pivot
for r in range(1,lcol.size):

Radd(matrix,1,r+1,-matrix[r,0]/matrix[0,0])
return(1+rank(matrix[1:,1:]))

[4]: # Pivots

def pivots(matrix):
r = rank(matrix)
pivots = []
for i in range(r):

row = matrix[i]
c = np.arange(row.size)[row != 0][0]
pivots.append((i+1,c+1))

return(pivots)

[5]: # Some tests that you can run

A = np.array([[1,1,1,3,-1],[1,2,4,7,3],[2,3,5,10,2]])
B = np.array([[1,3,1],[1,4,3],[2,3,5],[-1,10,2]])

[6]: rank(A)

[6]: 2

[7]: rank(B)

[7]: 3

[8]: pivots(A)

[8]: [(1, 1), (2, 2)]

[9]: pivots(B)

[9]: [(1, 1), (2, 2), (3, 3)]

[ ]:
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