
Solutions Final exam in ELE 3781 Mathematics elective
Date November 30th, 2022 at 1400 - 1700

Question 1.

(a) We use Gaussian elimination to find the rank of A:

A =


1 1 1 0
1 1 0 1
0 −1 1 1
1 0 1 2

 →


1 1 1 0
0 0 −1 1
0 −1 1 1
0 −1 0 2

 →


1 1 1 0
0 −1 0 2
0 −1 1 1
0 0 −1 1

 →


1 1 1 0
0 −1 0 2
0 0 1 −1
0 0 0 0


Since there are three pivot positions, we have that rk(A) = 3.

(b) Using the echelon form from (a), we see that dim Null(A) = 4 − 3 = 1 and that w is a free
variable. Back substitution gives that −z+w = 0, or z = w, that −y+ z+w = −y+ 2w = 0,
or y = 2w, and that x+ y + z = x+ 2w + w = 0, or x = −3w. Hence Null(A) consists of the
vectors of the form (x, y, z, w) = (−3w, 2w,w,w) = w ·w with w = (−3, 2, 1, 1), and it follows
that {w} is a base of Null(A) with w = (−3, 2, 1, 1).

(c) We check if v is an eigenvector of A by computing Av and try to write the product as λv:

Av =


1 1 1 0
1 1 0 1
0 −1 1 1
1 0 1 2

 ·


1
2
−1
1

 =


2
4
−2
2

 , λv = λ ·


1
2
−1
1

 =


λ
2λ
−λ
λ


Since Av = λv for λ = 2, it follows that v is an eigenvector of A with eigenvalue λ = 2.

(d) Let U be the set of all vectors that are orthogonal to the null space of A. Any vector u in U
must be orthogonal to w = (−3, 2, 1, 1), since w is in Null(A). When we put u = (x, y, z, w),
this means that

u ·w = (x, y, z, w) · (−3, 2, 1, 1) = −3x+ 2y + z + w = 0

On the other hand, if u is orthogonal to w, then it is also orthogonal to any vector w ·w in
Null(A), since u · (w ·w) = w(u ·w) = 0. Hence U consists of all solutions of the homogeneous
linear system

−3x+ 2y + z + w = 0

It is clear that there are three free variables, and that we may take any three variables as free,
for example x, y, z (to simplify computations). This gives w = 3x − 2y − z with x, y, z free,
and the vectors in U are given as

u = (x, y, z, 3x− 2y − z) = x · (1, 0, 0, 3) + y · (0, 1, 0,−2) + z · (0, 0, 1,−1)

Therefore {u1,u2,u3} is a base of U , with u1 = (1, 0, 0, 3), u2 = (0, 1, 0,−2), u3 = (0, 0, 1,−1).
Alternatively, we could take y, z, w as free, and write 3x = 2y+z+w, or x = 2y/3+z/3+w/3.
Then the vectors in U can be written

u = (2y/3 + z/3 + w/3, y, z, w) = y/3 · (2, 3, 0, 0) + z/3 · (1, 0, 3, 0) + w/3 · (1, 0, 0, 3)

Therefore {u′1,u′2,u′3} is also a base of U , with u′1 = (2, 3, 0, 0), u′2 = (1, 0, 3, 0), u′3 = (1, 0, 0, 3).

Question 2.

(a) To determine the definiteness of the quadratic form q, we write down its symmetric matrix A:

A =

3 2 1
2 4 1
1 1 1


Its leading principal minors are D1 = 3, D2 = 12−4 = 8, and D3 = 1(2−4)−1(3−2)+1(8) = 5.
Since all leading principal minors of A are positive, q is a positive definite quadratic form.
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(b) We can think of p(x, y, z) as a composite function p(u) = u · eu, with inner function or kernel
u(x) = 1−q(x). We have that H(u) = 0−H(q) = −2A is negative definite, since A is positive
definite from (a), and therefore u is concave with umax = u(0) = 1 at x = 0. In particular,
the range of u is Vu = (−∞, 1]. The outer function p(u) = ueu has derivative

p′(u) = 1 · eu + u · eu = (1 + u)eu

This means that p in decreasing for u ≤ −1 and that p is increasing for u ≥ −1. Since we
consider this function for all u ≤ 1, we have that pmin = p(−1) = −1 · e−1 = −1/e ∼= −0.37.
Since p(u)→ 0 when u→ −∞ and p(1) = 1 · e1 = e > 0, we see that pmax = p(1) = e ∼= 2.71.

(c) Since (x∗, y∗, z∗;λ∗) satisfies the Lagrange conditions, we can apply the second order condition
(SOC). We consider the function

h(x, y, z) = L(x, y, z;λ∗) = x+ y + z − λ∗(q(x, y, z)− 4)

with Hessian H(h) = 0−λ∗ · (2A−0) = −2λ∗ ·A. Since A is positive definite, H(h) is positive
definite and h is convex if λ∗ < 0, and H(h) is negative definite and h is concave if λ∗ > 0.
By the SOC, we have that (x∗, y∗, z∗) is a minimum point when λ∗ < 0 and a maximum point
when λ∗ > 0. Therefore statements (B) and (C) are true and statements (A) and (D) are
false.

(d) Let B be the row vector B =
(
1 1 1

)
and let A be the symmetric matrix of the quadratic

form q, given in (a). We can write f(x) = Bx and q(x) = xTAx in matrix form, and write the
Lagrangian as L = Bx− λ(xTAx− 4). Then the first order conditions (FOC) can be written
L′(x) = BT − λ · 2Ax = 0, and the constraint can be written xTAx = 4. From the FOC’s, we
get 2λAx = BT . Since λ = 0 does not give solutions, we can write this as

Ax =
1

2λ
·BT = s ·BT = s

1
1
1

 =

ss
s


with s = 1/(2λ). Alternative 1. We use Gaussian elimination to solve the linear system:3 2 1 s

2 4 1 s
1 1 1 s

 →
1 1 1 s

3 2 1 s
2 4 1 s

 →
1 1 1 s

0 −1 −2 −2s
0 2 −1 −s

 →
1 1 1 s

0 −1 −2 −2s
0 0 −5 −5s


Back substitution gives −5z = −5s, or z = s, −y − 2s = −2s, or y = 0, and x+ 0 + s = s, or
x = 0. We find that (x, y, z) = (0, 0, s), and the constraint gives q(0, 0, s) = s2 = 4, or s = ±2,
and λ = 1/(2s) = ±1/4. Alternative 2. We use that |A| = D3 = 5 6= 0 from (a), hence
the matrix A is invertible, and we find that x = A−1(sBT ) = sA−1BT . We put this into the
constraint xTAx = 4, and find that

xTAx = (sA−1BT )TA(sA−1BT ) = s2(B(A−1)TAA−1BT ) = s2(BA−1BT ) = 4

We have used that A−1 is symmetric since A is symmetric, which means that (A−1)T = A−1.
We compute A−1 using cofactors, and the fact that A is symmetric and therefore the cofactor
matrix of A is symmetric. This gives the following expressions for A−1 and BA−1BT :

A−1 =
1

5

 3 −1 −2
−1 2 −1
−2 −1 8

 ⇒ BA−1BT =
(
1 1 1

)
· 1

5

 3 −1 −2
−1 2 −1
−2 −1 8

 ·
1

1
1


=

1

5

(
1 1 1

)
·

0
0
5

 =
5

5
= 1

It follows that the constraint is s2 · 1 = 4, which gives s = ±2, and λ = 1/(2s) = ±1/4.
Therefore

x = sA−1BT = s · 1

5

 3 −1 −2
−1 2 −1
−2 −1 8

 ·
1

1
1

 = s · 1

5

0
0
5

 =

0
0
s


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With either of the two methods, we find two candidate points (0, 0, 2; 1/4) with f(0, 0, 2) = 2
and (0, 0,−2;−1/4) with f(0, 0,−2) = −2. We use the results in (c), and find that fmax = 2
at (x, y, z) = (0, 0, 2) with λ = 1/4, and fmin = −2 at (x, y, z) = (0, 0,−2) with λ = −1/4.

Question 3.

(a) The characteristic equation of the homogeneous differential equation 4y′′ + 4y′ − 3y = 0 is
4r2 + 4r − 3 = 0, which gives

r =
−4±

√
42 − 4 · 4(−3)

2 · 4
=
−4±

√
64

8
=
−4± 8

8

Hence there are two distinct characteristic roots r1 = 4/8 = 1/2 and r2 = −12/8 = −3/2, and
the general homogeneous solution is

yh = C1 e
t/2 + C2 e

−3t/2

To find a particular solution of 4y′′+4y′−3y = 8+8t−3t2, we use the method of undetermined
coefficients with y = At2+Bt+C, which gives y′ = 2At+B and y′′ = 2A. When we substitute
this into the differential equation, we get 4(2A) + 4(2At+B)−3(At2 +Bt+C) = 8 + 8t−3t2,
which gives −3A = −3, 8A − 3B = 8, and 8A + 4B − 3C = 8 by comparing coefficients.
Hence A = 1, B = 0, and C = 0, which gives yp = t2. The general solution of the differential
equation is

y = yh + yp = C1 e
t/2 + C2 e

−3t/2 + t2

(b) We write yt = (ut, vt) for t = 0, 1, 2, . . . such that the system of difference equations can be
written yt+1 = Ayt with

A =

(
0.7 0.8
0.4 0.3

)
The eigenvalues of A are given by the characteristic equation λ2−λ−0.11 = 0 since tr(A) = 1
and det(A) = 0.21− 0.32 = −0.11. This gives

λ =
1±

√
(−1)2 − 4(−0.11)

2
=

1±
√

1.44

2
=

1± 1.2

2

and the two eigenvalues are λ1 = 1.1 and λ2 = −0.1. To find a base {vi} for Eλi in each case,
we use the Gaussian processes

E1.1 :

(
−0.4 0.8
0.4 −0.8

)
→
(
−1 2
0 0

)
E−0.1 :

(
0.8 0.8
0.4 0.4

)
→
(

1 1
0 0

)
and back substitution, and find base vectors v1 = (2, 1) and v2 = (−1, 1) for the two
eigenspaces. Hence the general solution of the system of difference equations is

yt =

(
ut
vt

)
= C1

(
2
1

)
· 1.1t + C2

(
−1
1

)
· (−0.1)t =

(
2C1 · 1.1t − C2(−0.1)t

C1 · 1.1t + C2(−0.1)t

)
(c) We write 2ty2 − 4y + (2t2y − 4t)y′ = 0 as p+ q · y′ = 0, and see that this differential equation

is exact if there is a function h = h(t, y) such that h′t = p = 2ty2 − 4y and h′y = q = 2t2y− 4t.

From the first condition, we obtain h = t2y2−4ty+C(y), and substituting this into the second
condition, we get h′y = 2t2y − 4t+C ′(y) = 2t2y − 4t. We see that C(y) = 0 gives the solution

h = t2y2−4ty. This means that the differential equation is exact, and that its general solution
is given by t2y2− 4ty = C. The initial condition y(1) = 5 gives 12 · 52− 4 · 1 · 5 = C, or C = 5.
This gives

t2y2 − 4ty = 5 ⇒ t2y2 − 4ty − 5 = (ty + 1)(ty − 5) = 0

The explicit solutions are therefore y = −1/t or y = 5/t, and since we have y(1) = 5, the
particular solution is y = 5/t.
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(d) We use the hint to find homogeneous solutions: If y = tr, then y′ = rtr−1 and y′′ = r(r−1)tr−2.
We substitute these expressions into the homogeneous equation t2y′′ + 4ty′ + 2y = 0:

t2(r(r − 1)tr−2) + 4t(rtr−1) + 2(tr) = (r2 − r + 4r + 2)tr = (r2 + 3r + 2)tr = 0

This means that y = tr is a homogeneous solution if and only if r2 + 3r + 2 = 0, which gives
r = −1 and r = −2. The general homogeneous solution is therefore

yh = C1 · t−1 + C2 · t−2 =
C1 · t+ C2

t2

We use the method of undetermined coefficients to find a particular solution, and use y = A
since the right-hand side of t2y′′ + 4ty′ + 2y = 6 is a constant. If y = A, then y′ = y′′ = 0,
and when we substitute this into the differential equation, we get t2(0) + 4t(0) + 2(A) = 6, or
A = 3. Hence yp = 3 and the general solution of the differential equation is

y = yh + yp =
C1 · t+ C2

t2
+ 3 =

C1 · t+ C2 + 3t2

t2
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