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Question 1.

(a) We use Gaussian elimination to find the rank of A:

A =


1 0 2 1
3 2 0 −1
4 2 2 0
1 −2 8 5

 →


1 0 2 1
0 2 −6 −4
0 2 −6 −4
0 −2 6 4

 →


1 0 2 1
0 2 −6 −4
0 0 0 0
0 0 0 0


Since there are two pivot positions, we have that rk(A) = 2. Since the pivot positions are in the
first two columns, the first two column vectors of A form a base B = {(1, 3, 4, 1), (0, 2, 2,−2)}
of Col(A).

(b) We check if v is an eigenvector of A by computing Av and try to write the product as λv:

Av =


1 0 2 1
3 2 0 −1
4 2 2 0
1 −2 8 5

 ·

−1
0
2
−3

 =


0
0
0
0

 = 0 ·


−1
0
2
−3

 = 0 · v

Since this is possible with λ = 0, it follows that v is an eigenvector of A with eigenvalue λ = 0.
(c) We have that det(A) = 0, since A is a 4×4 matrix with rk(A) = 2 < 4 from (a). An alternative

argument is that since λ = 0 is an eigenvalue of A from (b), it is a solution of |A − λI| = 0,
and this means that |A− 0 · I| = 0, or |A| = 0. It is also possible to compute det(A) directly,
for instance using cofactor expansion.

(d) We have that |S| = 1 · 2 · 4 = 8 6= 0, hence S has an inverse matrix S−1. For any eigenvalue
λ 6= 0 of S, there is an eigenvector v such that

Sv = λv ⇒ v = S−1λv = λS−1v ⇒ 1

λ
· v = S−1v

by multiplication with S−1 and 1/λ. It follows that if λ 6= 0 is an eigenvalue of S, then 1/λ is
an eigenvalue of S−1. Hence the eigenvalues of S−1 are 1, 1/2, 1/4 > 0, and it follows that S−1

is positive definite. We comment that since S is symmetric and invertible, the inverse S−1 is
symmetric, so that the definiteness of S−1 is well-defined. This is implicit in the question and
not necessary to prove, but we include an argument: We have that

S−1 =
1

8

C11 C12 C13

C21 C22 C23

C31 C32 C3n

T

where Cij are the cofactors of S. Since S is symmetric, it follows that Cij = Cji, and S−1 is
therefore also a symmetric matrix.

Question 2.

(a) We use superposition to solve the linear differential equation y′′ + y′ = 6e3t: To find the
homogeneous solution yh, we consider the homogeneous differential equation y′′ + y′ = 0 with
characteristic equation r2 + r = 0. It has two distinct solutions r = 0, r = −1, and therefore

yh = C1 e
0 + C2 e

−t = C1 + C2 e
−t

To find a particular solution yp, we consider the differential equation y′′ + y′ = 6e3t and use
the method of undetermined coefficients: We try to find solutions of the form y = Ae3t, which
gives y′ = 3Ae3t and y′′ = 9Ae3t. When we substitute this into the differential equation, we
get (9Ae3t) + 3(Ae3t) = 6e3t, which gives 12A = 6, or A = 1/2. The general solution of the
differential equation is therefore

y = yh + yp = C1 + C2 e
−t +

1

2
e3t
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(b) The differential equation t(y′−y) = y can be written y′−y = y/t, or y′ = y+y/t = y(1+1/t),
and it is both linear and separable. We choose to solve it as a separable differential equation:

y′ = y

(
1 +

1

t

)
⇒ 1

y
y′ = 1 +

1

t
⇒

∫
1

y
dy =

∫ (
1 +

1

t

)
dt

This gives ln |y| = t+ ln |t|+C, or |y| = et+ln |t|+C = et · |t| · eC . We therefore find the general
solution y = K tet with K = ±eC .

(c) We use superposition to solve the linear difference equation yt+2 + 3yt+1 − 4yt = 5: To find
the homogeneous solution yht , we consider the characteristic equation r2 + 3r − 4 = 0, with
two distinct roots r = 1, r = −4, and therefore

yht = C1 · 1t + C2 · (−4)t = C1 + C2 · (−4)t

To find a particular solution ypt , we consider the difference equation yt+2 + 3yt+1 − 4yt = 5.
We try to find a constant solution yt = A, which gives yt+1 = yt+2 = A. When we substitute
this into the difference equation, we get A+ 3A− 4A = 5, or 0 ·A = 5, which has no solutions.
Next, we try to find solutions of the form yt = A ·t = At, which gives yt+1 = A(t+1) = At+A,
and yt+2 = A(t+ 2) = At+ 2A. When we substitute this into the difference equation, we get

(At+ 2A) + 3(At+A)− 4(At) = 5 ⇒ 5A = 5

We find the solution A = 1, or ypt = t. The general solution is therefore given by

yt = yht + ypt = C1 + C2 · (−4)t + t

(d) We let A be the 3× 3 matrix such that the system of differential equations can be written in
the form y′ = Ay. The eigenvalues of A is given the characteristic equation

det(A− λI) =

∣∣∣∣∣∣
1− λ 1 2
−1 −λ 1
0 1 3− λ

∣∣∣∣∣∣ = 0

We use cofactor expansion along the first column to compute the determinant, and get

(1− λ)(−λ(3− λ)− 1)− (−1)((3− λ)− 2) = (1− λ)(λ2 − 3λ− 1) + (1− λ)

We see that 1−λ is a common factor, and write the characteristic equation in factorized form
(1− λ)(λ2 − 3λ) = λ(1− λ)(λ− 3) = 0. This gives three distinct eigenvalues λ1 = 0, λ2 = 1,
and λ3 = 3, and this means that A is diagonalizable. We find a base {vi} for Eλi in each case:
We use the Gaussian processes

E0 :

 1 1 2
−1 0 1
0 1 3

 →
1 1 2

0 1 3
0 0 0

 E1 :

 0 1 2
−1 −1 1
0 1 2

 →
−1 −1 1

0 1 2
0 0 0


E3 :

−2 1 2
−1 −3 1
0 1 0

 →
−1 −3 1

0 1 0
0 0 0


and back substitution, and find base vectors v1 = (1,−3, 1), v2 = (3,−2, 1), v3 = (1, 0, 1) for
the three eigenspaces. The general solution is therefore given by

y = C1v1e
λ1t + C2v2e

λ2t + C3v3e
λ3t = C1

 1
−3
1

+ C2

 3
−2
1

 et + C3

1
0
1

 e3t

The initial condition y(0) = (5,−5, 3) gives the linear system C1v1 +C2v2 +C3v3 = y(0), or
P ·C = y(0), where P = (v1|v2|v3) and C is the column vector given by C = (C1, C2, C3).
We solve this using Gaussian elimination: 1 3 1 5

−3 −2 0 −5
1 1 1 3

 →
1 3 1 5

0 7 3 10
0 −2 0 −2

 →
1 3 1 5

0 −2 0 −2
0 0 3 3
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Back substitution gives C1 = C2 = C3 = 1, and we find the particular solution

y =

 1
−3
1

+

 3
−2
1

 et +

1
0
1

 e3t

Question 3.

(a) We write down the symmetric matrix A of the quadratic form g and determine its definiteness:
We find that

A =


3 1 4 −1
1 1 2 1
4 2 7 0
−1 1 0 4


The leading principal minors are D1 = 3, D2 = 3− 1 = 2, D3 = 3(3)− 1(−1) + 4(2− 4) = 2,
and D4 = |A| = 2, since the determinant is given by cofactor expansion along the last row:

D4 = −(−1) ·

∣∣∣∣∣∣
1 4 −1
1 2 1
2 7 0

∣∣∣∣∣∣+ 1 ·

∣∣∣∣∣∣
3 4 −1
1 2 1
4 7 0

∣∣∣∣∣∣+ 4 ·D3 = −2− 4 + 8 = 2

Since all leading principal minors are positive, g is a positive definite quadratic form.
(b) The Kuhn-Tucker problem is in standard form and has Lagrangian L = eTx− λ(xTAx− 18),

where e = (1, 1, 1, 1) is considered as a column vector. The first order conditions (FOC) can
therefore be written e − λ · 2Ax = 0, the constraint (C) can be written xTAx ≤ 18, and the
complementary slackness conditions can be written λ ≥ 0 and λ(xTAx − 18) = 0. Together,
the conditions FOC + C + CSC are the Kuhn-Tucker conditions of the problem:

FOC+C+CSC: e− 2λAx = 0, xTAx ≤ 18, λ ≥ 0, λ(xTAx− 18) = 0

(c) In case g(x) < 18, there is no condition, and in case g(x) = 18, the NDCQ is given by

rk J = rk
(
g′x g′y g′z g′w

)
= 1

This condition fails if and only if the rk J = 0, or g′x = g′y = g′z = g′w = 0. This is the condition
for stationary points of g, and can be written 2Ax = 0. Since |A| = D4 = 2 6= 0 from (a), A is
invertible, and x = 0 is the only stationary point of g. This point does not satisfy g(x) = 18.
We conclude that there are no admissible points where NDCQ does not hold.

(d) We see that if λ = 0, then the FOC’s give e = 0, or (1, 1, 1, 1) = (0, 0, 0, 0), which is clearly
impossible. By the CSC’s, we must have that λ > 0 and that g(x) = 18. To solve for candidate
points in this case, we consider the FOC’s, which give a linear system of equations:

2λAx = e → Ax =
1

2λ
e = te = (t, t, t, t) with t =

1

2λ

We use Gauss to solve this linear system, and start by switching the first two rows:
3 1 4 −1 t
1 1 2 1 t
4 2 7 0 t
−1 1 0 4 t

 →


1 1 2 1 t
3 1 4 −1 t
4 2 7 0 t
−1 1 0 4 t


We then use a standard Gaussian process:

1 1 2 1 t
3 1 4 −1 t
4 2 7 0 t
−1 1 0 4 t

 →


1 1 2 1 t
0 −2 −2 −4 −2t
0 −2 −1 −4 −3t
0 2 2 5 2t

 →


1 1 2 1 t
0 −2 −2 −4 −2t
0 0 1 0 −t
0 0 0 1 0


Back substitution gives w = 0, z = −t, −2y = 2z + 4w − 2t = 2(−t) + 4(0) − 2t = −4t, or
y = 2t, and x = −y − 2z − w + t = −2t− 2(−t)− 0 + t = t. Hence (x, y, z, w) = (t, 2t,−t, 0),

3



which can be written x = ts with s = (1, 2,−1, 0) and t = 1/(2λ). An alternative method is
to write down the FOC’s based on a direct computation:

L′x = 1− λ(6x+ 2y + 8z − 2w) = 0

L′y = 1− λ(2x+ 2y + 4z + 2w) = 0

L′z = 1− λ(8x+ 4y + 14z) = 0

L′w = 1− λ(−2x+ 2y + 8w) = 0

Also with this method, we see that λ 6= 0, and we can solve each equation for 1/λ, and put
the expressions for 1/λ in the four FOC’s equal to each other. This gives the homogeneous
linear system

6x+ 2y + 8z − 2w = 2x+ 2y + 4z + 2w ⇒ 4x+ 4z − 2w = 0

2x+ 2y + 4z + 2w = 8x+ 4y + 14z −6x− 2y − 10z + 2w = 0

8x+ 4y + 14z = −2x+ 2y + 8w 10x+ 2y + 14z − 8w = 0

We can solve this system with Gaussian elimination: We get that z is a free variable, and
back substitution gives w = 0, y = −2z, and x = −z. Hence (x, y, z, w) = (−z,−2z, z, 0), and
when we put this into the first FOC, we get 1/λ = −6z− 4z+ 8z = −2z. Hence z = −1/(2λ),
and (x, y, z, w) = 1/(2λ) · (1, 2,−1, 0) = ts, the same solution as we obtained using matrices
above. With either method for solving the FOC’s, we continue to compute g(x):

g(x) = xTAx ⇒ g(ts) = (ts)TA(ts) = tsTA(ts) = t2(sTAs) = t2g(s)

The constraint can therefore be written

g(t, 2t,−t, 0) = t2g(1, 2,−1, 0) = t2 · 2 = 18 ⇒ t2 = 9 ⇒ t = ±3 = 3

since λ > 0. This means that (x, y, z, w) = (3, 6,−3, 0), and since t = 1/(2λ), we have
2λ = 1/3, or λ = 1/6. Hence there is a unique candidate point (x, y, z, w;λ) = (3, 6,−3, 0; 1/6)
that satisfied the Kuhn-Tucker conditions. Since

h(x) = L(x; 1/6) = x+ y + z + w − 1

6
(g(x, y, z, w)− 18)

has Hessian H(h) = −(1/6) ·H(g) = −(1/6) ·2A, and A is positive definite from (a), it follows
that H(h) is negative definite, and h is a concave function. Hence, it follows by the SOC that
fmax = f(3, 6,−3, 0) = 6 is the maximum value.

(e) Since A is a positive definite symmetric matrix, it has positive eigenvalues λ1, λ2, λ3, λ4 > 0,
and there is an orthogonal change of base x = Pu such that g(x) = λ1·u21+λ2·u22+λ3·u23+λ4·u24
in the new coordinates u = (u1, u2, u3, u4). Since D is given by the constraint g(x) ≤ 18, which
can be written as

λ1 · u21 + λ2 · u22 + λ3 · u23 + λ4 · u24 ≤ 18

it follows that u2i ≤ 18/λi for i = 1, 2, 3, 4, or that

−
√

18/λi ≤ ui ≤
√

18/λi

Hence the set D is bounded in the new u = (u1, u2, u3, u4) coordinate system, and it is clearly
a closed set. Therefore, D is a compact set.
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