Solutions	Final exam in ELE 3781 Mathematics elective
Date	December 2nd, 2021 at 0900-1200

Question 1.

(a) We use Gaussian elimination to find the rank of A :

$$
A=\left(\begin{array}{cccc}
1 & 0 & 2 & 1 \\
3 & 2 & 0 & -1 \\
4 & 2 & 2 & 0 \\
1 & -2 & 8 & 5
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
1 & 0 & 2 & 1 \\
0 & 2 & -6 & -4 \\
0 & 2 & -6 & -4 \\
0 & -2 & 6 & 4
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
1 & 0 & 2 & 1 \\
0 & 2 & -6 & -4 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Since there are two pivot positions, we have that $\operatorname{rk}(A)=2$. Since the pivot positions are in the first two columns, the first two column vectors of A form a base $B=\{(1,3,4,1),(0,2,2,-2)\}$ of $\operatorname{Col}(A)$.
(b) We check if \mathbf{v} is an eigenvector of A by computing $A \mathbf{v}$ and try to write the product as $\lambda \mathbf{v}$:

$$
A \mathbf{v}=\left(\begin{array}{cccc}
1 & 0 & 2 & 1 \\
3 & 2 & 0 & -1 \\
4 & 2 & 2 & 0 \\
1 & -2 & 8 & 5
\end{array}\right) \cdot\left(\begin{array}{c}
-1 \\
0 \\
2 \\
-3
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right)=0 \cdot\left(\begin{array}{c}
-1 \\
0 \\
2 \\
-3
\end{array}\right)=0 \cdot \mathbf{v}
$$

Since this is possible with $\lambda=0$, it follows that \mathbf{v} is an eigenvector of A with eigenvalue $\lambda=0$.
(c) We have that $\operatorname{det}(A)=0$, since A is a 4×4 matrix with $\operatorname{rk}(A)=2<4$ from (a). An alternative argument is that since $\lambda=0$ is an eigenvalue of A from (b), it is a solution of $|A-\lambda I|=0$, and this means that $|A-0 \cdot I|=0$, or $|A|=0$. It is also possible to compute $\operatorname{det}(A)$ directly, for instance using cofactor expansion.
(d) We have that $|S|=1 \cdot 2 \cdot 4=8 \neq 0$, hence S has an inverse matrix S^{-1}. For any eigenvalue $\lambda \neq 0$ of S, there is an eigenvector \mathbf{v} such that

$$
S \mathbf{v}=\lambda \mathbf{v} \quad \Rightarrow \quad \mathbf{v}=S^{-1} \lambda \mathbf{v}=\lambda S^{-1} \mathbf{v} \quad \Rightarrow \quad \frac{1}{\lambda} \cdot \mathbf{v}=S^{-1} \mathbf{v}
$$

by multiplication with S^{-1} and $1 / \lambda$. It follows that if $\lambda \neq 0$ is an eigenvalue of S, then $1 / \lambda$ is an eigenvalue of S^{-1}. Hence the eigenvalues of S^{-1} are $1,1 / 2,1 / 4>0$, and it follows that S^{-1} is positive definite. We comment that since S is symmetric and invertible, the inverse S^{-1} is symmetric, so that the definiteness of S^{-1} is well-defined. This is implicit in the question and not necessary to prove, but we include an argument: We have that

$$
S^{-1}=\frac{1}{8}\left(\begin{array}{lll}
C_{11} & C_{12} & C_{13} \\
C_{21} & C_{22} & C_{23} \\
C_{31} & C_{32} & C_{3 n}
\end{array}\right)^{T}
$$

where $C_{i j}$ are the cofactors of S. Since S is symmetric, it follows that $C_{i j}=C_{j i}$, and S^{-1} is therefore also a symmetric matrix.

Question 2.

(a) We use superposition to solve the linear differential equation $y^{\prime \prime}+y^{\prime}=6 e^{3 t}$: To find the homogeneous solution y_{h}, we consider the homogeneous differential equation $y^{\prime \prime}+y^{\prime}=0$ with characteristic equation $r^{2}+r=0$. It has two distinct solutions $r=0, r=-1$, and therefore

$$
y_{h}=C_{1} e^{0}+C_{2} e^{-t}=C_{1}+C_{2} e^{-t}
$$

To find a particular solution y_{p}, we consider the differential equation $y^{\prime \prime}+y^{\prime}=6 e^{3 t}$ and use the method of undetermined coefficients: We try to find solutions of the form $y=A e^{3 t}$, which gives $y^{\prime}=3 A e^{3 t}$ and $y^{\prime \prime}=9 A e^{3 t}$. When we substitute this into the differential equation, we get $\left(9 A e^{3 t}\right)+3\left(A e^{3 t}\right)=6 e^{3 t}$, which gives $12 A=6$, or $A=1 / 2$. The general solution of the differential equation is therefore

$$
y=y_{h}+y_{p}=C_{1}+C_{2} e^{-t}+\frac{1}{2} e^{3 t}
$$

(b) The differential equation $t\left(y^{\prime}-y\right)=y$ can be written $y^{\prime}-y=y / t$, or $y^{\prime}=y+y / t=y(1+1 / t)$, and it is both linear and separable. We choose to solve it as a separable differential equation:

$$
y^{\prime}=y\left(1+\frac{1}{t}\right) \quad \Rightarrow \quad \frac{1}{y} y^{\prime}=1+\frac{1}{t} \quad \Rightarrow \quad \int \frac{1}{y} \mathrm{~d} y=\int\left(1+\frac{1}{t}\right) \mathrm{d} t
$$

This gives $\ln |y|=t+\ln |t|+C$, or $|y|=e^{t+\ln |t|+C}=e^{t} \cdot|t| \cdot e^{C}$. We therefore find the general solution $y=K t e^{t}$ with $K= \pm e^{C}$.
(c) We use superposition to solve the linear difference equation $y_{t+2}+3 y_{t+1}-4 y_{t}=5$: To find the homogeneous solution y_{t}^{h}, we consider the characteristic equation $r^{2}+3 r-4=0$, with two distinct roots $r=1, r=-4$, and therefore

$$
y_{t}^{h}=C_{1} \cdot 1^{t}+C_{2} \cdot(-4)^{t}=C_{1}+C_{2} \cdot(-4)^{t}
$$

To find a particular solution y_{t}^{p}, we consider the difference equation $y_{t+2}+3 y_{t+1}-4 y_{t}=5$. We try to find a constant solution $y_{t}=A$, which gives $y_{t+1}=y_{t+2}=A$. When we substitute this into the difference equation, we get $A+3 A-4 A=5$, or $0 \cdot A=5$, which has no solutions. Next, we try to find solutions of the form $y_{t}=A \cdot t=A t$, which gives $y_{t+1}=A(t+1)=A t+A$, and $y_{t+2}=A(t+2)=A t+2 A$. When we substitute this into the difference equation, we get

$$
(A t+2 A)+3(A t+A)-4(A t)=5 \quad \Rightarrow \quad 5 A=5
$$

We find the solution $A=1$, or $y_{t}^{p}=t$. The general solution is therefore given by

$$
y_{t}=y_{t}^{h}+y_{t}^{p}=C_{1}+C_{2} \cdot(-4)^{t}+t
$$

(d) We let A be the 3×3 matrix such that the system of differential equations can be written in the form $\mathbf{y}^{\prime}=A \mathbf{y}$. The eigenvalues of A is given the characteristic equation

$$
\operatorname{det}(A-\lambda I)=\left|\begin{array}{ccc}
1-\lambda & 1 & 2 \\
-1 & -\lambda & 1 \\
0 & 1 & 3-\lambda
\end{array}\right|=0
$$

We use cofactor expansion along the first column to compute the determinant, and get

$$
(1-\lambda)(-\lambda(3-\lambda)-1)-(-1)((3-\lambda)-2)=(1-\lambda)\left(\lambda^{2}-3 \lambda-1\right)+(1-\lambda)
$$

We see that $1-\lambda$ is a common factor, and write the characteristic equation in factorized form $(1-\lambda)\left(\lambda^{2}-3 \lambda\right)=\lambda(1-\lambda)(\lambda-3)=0$. This gives three distinct eigenvalues $\lambda_{1}=0, \lambda_{2}=1$, and $\lambda_{3}=3$, and this means that A is diagonalizable. We find a base $\left\{\mathbf{v}_{i}\right\}$ for $E_{\lambda_{i}}$ in each case: We use the Gaussian processes
$E_{0}:\left(\begin{array}{ccc}1 & 1 & 2 \\ -1 & 0 & 1 \\ 0 & 1 & 3\end{array}\right) \rightarrow\left(\begin{array}{ccc}1 & 1 & 2 \\ 0 & 1 & 3 \\ 0 & 0 & 0\end{array}\right)$
$E_{1}:\left(\begin{array}{ccc}0 & 1 & 2 \\ -1 & -1 & 1 \\ 0 & 1 & 2\end{array}\right) \rightarrow\left(\begin{array}{ccc}-1 & -1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 0\end{array}\right)$
$E_{3}:\left(\begin{array}{ccc}-2 & 1 & 2 \\ -1 & -3 & 1 \\ 0 & 1 & 0\end{array}\right) \rightarrow\left(\begin{array}{ccc}-1 & -3 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right)$
and back substitution, and find base vectors $\mathbf{v}_{1}=(1,-3,1), \mathbf{v}_{2}=(3,-2,1), \mathbf{v}_{3}=(1,0,1)$ for the three eigenspaces. The general solution is therefore given by

$$
\mathbf{y}=C_{1} \mathbf{v}_{1} e^{\lambda_{1} t}+C_{2} \mathbf{v}_{2} e^{\lambda_{2} t}+C_{3} \mathbf{v}_{3} e^{\lambda_{3} t}=C_{1}\left(\begin{array}{c}
1 \\
-3 \\
1
\end{array}\right)+C_{2}\left(\begin{array}{c}
3 \\
-2 \\
1
\end{array}\right) e^{t}+C_{3}\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right) e^{3 t}
$$

The initial condition $\mathbf{y}(0)=(5,-5,3)$ gives the linear system $C_{1} \mathbf{v}_{1}+C_{2} \mathbf{v}_{2}+C_{3} \mathbf{v}_{3}=\mathbf{y}(0)$, or $P \cdot \mathbf{C}=\mathbf{y}(0)$, where $P=\left(\mathbf{v}_{1}\left|\mathbf{v}_{2}\right| \mathbf{v}_{3}\right)$ and \mathbf{C} is the column vector given by $\mathbf{C}=\left(C_{1}, C_{2}, C_{3}\right)$. We solve this using Gaussian elimination:

$$
\left(\begin{array}{ccc|c}
1 & 3 & 1 & 5 \\
-3 & -2 & 0 & -5 \\
1 & 1 & 1 & 3
\end{array}\right) \rightarrow\left(\begin{array}{ccc|c}
1 & 3 & 1 & 5 \\
0 & 7 & 3 & 10 \\
0 & -2 & 0 & -2
\end{array}\right) \rightarrow\left(\begin{array}{ccc|c}
1 & 3 & 1 & 5 \\
0 & -2 & 0 & -2 \\
0 & 0 & 3 & 3
\end{array}\right)
$$

Back substitution gives $C_{1}=C_{2}=C_{3}=1$, and we find the particular solution

$$
\mathbf{y}=\left(\begin{array}{c}
1 \\
-3 \\
1
\end{array}\right)+\left(\begin{array}{c}
3 \\
-2 \\
1
\end{array}\right) e^{t}+\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right) e^{3 t}
$$

Question 3.

(a) We write down the symmetric matrix A of the quadratic form g and determine its definiteness: We find that

$$
A=\left(\begin{array}{cccc}
3 & 1 & 4 & -1 \\
1 & 1 & 2 & 1 \\
4 & 2 & 7 & 0 \\
-1 & 1 & 0 & 4
\end{array}\right)
$$

The leading principal minors are $D_{1}=3, D_{2}=3-1=2, D_{3}=3(3)-1(-1)+4(2-4)=2$, and $D_{4}=|A|=2$, since the determinant is given by cofactor expansion along the last row:

$$
D_{4}=-(-1) \cdot\left|\begin{array}{ccc}
1 & 4 & -1 \\
1 & 2 & 1 \\
2 & 7 & 0
\end{array}\right|+1 \cdot\left|\begin{array}{ccc}
3 & 4 & -1 \\
1 & 2 & 1 \\
4 & 7 & 0
\end{array}\right|+4 \cdot D_{3}=-2-4+8=2
$$

Since all leading principal minors are positive, g is a positive definite quadratic form.
(b) The Kuhn-Tucker problem is in standard form and has Lagrangian $\mathcal{L}=\mathbf{e}^{T} \mathbf{x}-\lambda\left(\mathbf{x}^{T} A \mathbf{x}-18\right)$, where $\mathbf{e}=(1,1,1,1)$ is considered as a column vector. The first order conditions (FOC) can therefore be written $\mathbf{e}-\lambda \cdot 2 A \mathbf{x}=\mathbf{0}$, the constraint (C) can be written $\mathbf{x}^{T} A \mathbf{x} \leq 18$, and the complementary slackness conditions can be written $\lambda \geq 0$ and $\lambda\left(\mathbf{x}^{T} A \mathbf{x}-18\right)=0$. Together, the conditions FOC $+\mathrm{C}+\mathrm{CSC}$ are the Kuhn-Tucker conditions of the problem:

$$
\mathrm{FOC}+\mathrm{C}+\mathrm{CSC}: \quad \mathbf{e}-2 \lambda A \mathbf{x}=\mathbf{0}, \mathbf{x}^{T} A \mathbf{x} \leq 18, \lambda \geq 0, \lambda\left(\mathbf{x}^{T} A \mathbf{x}-18\right)=0
$$

(c) In case $g(\mathbf{x})<18$, there is no condition, and in case $g(\mathbf{x})=18$, the NDCQ is given by

$$
\operatorname{rk} J=\operatorname{rk}\left(\begin{array}{llll}
g_{x}^{\prime} & g_{y}^{\prime} & g_{z}^{\prime} & g_{w}^{\prime}
\end{array}\right)=1
$$

This condition fails if and only if the rk $J=0$, or $g_{x}^{\prime}=g_{y}^{\prime}=g_{z}^{\prime}=g_{w}^{\prime}=0$. This is the condition for stationary points of g, and can be written $2 A \mathbf{x}=\mathbf{0}$. Since $|A|=D_{4}=2 \neq 0$ from (a), A is invertible, and $\mathbf{x}=\mathbf{0}$ is the only stationary point of g. This point does not satisfy $g(\mathbf{x})=18$. We conclude that there are no admissible points where NDCQ does not hold.
(d) We see that if $\lambda=0$, then the FOC's give $\mathbf{e}=\mathbf{0}$, or $(1,1,1,1)=(0,0,0,0)$, which is clearly impossible. By the CSC's, we must have that $\lambda>0$ and that $g(\mathbf{x})=18$. To solve for candidate points in this case, we consider the FOC's, which give a linear system of equations:

$$
2 \lambda A \mathbf{x}=\mathbf{e} \quad \rightarrow \quad A \mathbf{x}=\frac{1}{2 \lambda} \mathbf{e}=t \mathbf{e}=(t, t, t, t) \text { with } t=\frac{1}{2 \lambda}
$$

We use Gauss to solve this linear system, and start by switching the first two rows:

$$
\left(\begin{array}{rrrr|r}
3 & 1 & 4 & -1 & t \\
1 & 1 & 2 & 1 & t \\
4 & 2 & 7 & 0 & t \\
-1 & 1 & 0 & 4 & t
\end{array}\right) \rightarrow\left(\begin{array}{rrrr|r}
1 & 1 & 2 & 1 & t \\
3 & 1 & 4 & -1 & t \\
4 & 2 & 7 & 0 & t \\
-1 & 1 & 0 & 4 & t
\end{array}\right)
$$

We then use a standard Gaussian process:

$$
\left(\begin{array}{rrrr|r}
1 & 1 & 2 & 1 & t \\
3 & 1 & 4 & -1 & t \\
4 & 2 & 7 & 0 & t \\
-1 & 1 & 0 & 4 & t
\end{array}\right) \rightarrow\left(\begin{array}{rrrr|r}
1 & 1 & 2 & 1 & t \\
0 & -2 & -2 & -4 & -2 t \\
0 & -2 & -1 & -4 & -3 t \\
0 & 2 & 2 & 5 & 2 t
\end{array}\right) \rightarrow\left(\begin{array}{rrrr|r}
1 & 1 & 2 & 1 & t \\
0 & -2 & -2 & -4 & -2 t \\
0 & 0 & 1 & 0 & -t \\
0 & 0 & 0 & 1 & 0
\end{array}\right)
$$

Back substitution gives $w=0, z=-t,-2 y=2 z+4 w-2 t=2(-t)+4(0)-2 t=-4 t$, or $y=2 t$, and $x=-y-2 z-w+t=-2 t-2(-t)-0+t=t$. Hence $(x, y, z, w)=(t, 2 t,-t, 0)$,
which can be written $\mathbf{x}=t \mathbf{s}$ with $\mathbf{s}=(1,2,-1,0)$ and $t=1 /(2 \lambda)$. An alternative method is to write down the FOC's based on a direct computation:

$$
\begin{aligned}
\mathcal{L}_{x}^{\prime} & =1-\lambda(6 x+2 y+8 z-2 w)=0 \\
\mathcal{L}_{y}^{\prime} & =1-\lambda(2 x+2 y+4 z+2 w)=0 \\
\mathcal{L}_{z}^{\prime} & =1-\lambda(8 x+4 y+14 z)=0 \\
\mathcal{L}_{w}^{\prime} & =1-\lambda(-2 x+2 y+8 w)=0
\end{aligned}
$$

Also with this method, we see that $\lambda \neq 0$, and we can solve each equation for $1 / \lambda$, and put the expressions for $1 / \lambda$ in the four FOC's equal to each other. This gives the homogeneous linear system

$$
\begin{aligned}
6 x+2 y+8 z-2 w & =2 x+2 y+4 z+2 w \\
2 x+2 y+4 z+2 w & =8 x+4 y+14 z \\
8 x+4 y+14 z & =-2 x+2 y+8 w
\end{aligned}
$$

We can solve this system with Gaussian elimination: We get that z is a free variable, and back substitution gives $w=0, y=-2 z$, and $x=-z$. Hence $(x, y, z, w)=(-z,-2 z, z, 0)$, and when we put this into the first FOC, we get $1 / \lambda=-6 z-4 z+8 z=-2 z$. Hence $z=-1 /(2 \lambda)$, and $(x, y, z, w)=1 /(2 \lambda) \cdot(1,2,-1,0)=t \mathbf{s}$, the same solution as we obtained using matrices above. With either method for solving the FOC's, we continue to compute $g(\mathbf{x})$:

$$
g(\mathbf{x})=\mathbf{x}^{T} A \mathbf{x} \quad \Rightarrow \quad g(t \mathbf{s})=(t \mathbf{s})^{T} A(t \mathbf{s})=t \mathbf{s}^{T} A(t \mathbf{s})=t^{2}\left(\mathbf{s}^{T} A \mathbf{s}\right)=t^{2} g(\mathbf{s})
$$

The constraint can therefore be written

$$
g(t, 2 t,-t, 0)=t^{2} g(1,2,-1,0)=t^{2} \cdot 2=18 \quad \Rightarrow \quad t^{2}=9 \quad \Rightarrow \quad t= \pm 3=3
$$

since $\lambda>0$. This means that $(x, y, z, w)=(3,6,-3,0)$, and since $t=1 /(2 \lambda)$, we have $2 \lambda=1 / 3$, or $\lambda=1 / 6$. Hence there is a unique candidate point $(x, y, z, w ; \lambda)=(3,6,-3,0 ; 1 / 6)$ that satisfied the Kuhn-Tucker conditions. Since

$$
h(\mathbf{x})=\mathcal{L}(\mathbf{x} ; 1 / 6)=x+y+z+w-\frac{1}{6}(g(x, y, z, w)-18)
$$

has Hessian $H(h)=-(1 / 6) \cdot H(g)=-(1 / 6) \cdot 2 A$, and A is positive definite from (a), it follows that $H(h)$ is negative definite, and h is a concave function. Hence, it follows by the SOC that $f_{\max }=f(3,6,-3,0)=6$ is the maximum value.
(e) Since A is a positive definite symmetric matrix, it has positive eigenvalues $\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}>0$, and there is an orthogonal change of base $\mathbf{x}=P \mathbf{u}$ such that $g(\mathbf{x})=\lambda_{1} \cdot u_{1}^{2}+\lambda_{2} \cdot u_{2}^{2}+\lambda_{3} \cdot u_{3}^{2}+\lambda_{4} \cdot u_{4}^{2}$ in the new coordinates $\mathbf{u}=\left(u_{1}, u_{2}, u_{3}, u_{4}\right)$. Since D is given by the constraint $g(\mathbf{x}) \leq 18$, which can be written as

$$
\lambda_{1} \cdot u_{1}^{2}+\lambda_{2} \cdot u_{2}^{2}+\lambda_{3} \cdot u_{3}^{2}+\lambda_{4} \cdot u_{4}^{2} \leq 18
$$

it follows that $u_{i}^{2} \leq 18 / \lambda_{i}$ for $i=1,2,3,4$, or that

$$
-\sqrt{18 / \lambda_{i}} \leq u_{i} \leq \sqrt{18 / \lambda_{i}}
$$

Hence the set D is bounded in the new $\mathbf{u}=\left(u_{1}, u_{2}, u_{3}, u_{4}\right)$ coordinate system, and it is clearly a closed set. Therefore, D is a compact set.

