Solutions Final exam in ELE 3781 Mathematics elective
Date December 2nd, 2021 at 0900 - 1200

Question 1.

(a)

We use Gaussian elimination to find the rank of A:

1 0 2 1 1 0 2 1 10 2 1
A= 3 2 0 -1 . 0 2 -6 —4 . 0 2 -6 —4

4 2 2 0 0 2 -6 —4 00 0 O

1 -2 8 5 0 -2 6 4 00 0 O

Since there are two pivot positions, we have that rk(A) = 2. Since the pivot positions are in the
first two columns, the first two column vectors of A form a base B = {(1,3,4,1),(0,2,2,—-2)}

of Col(A).
We check if v is an eigenvector of A by computing Av and try to write the product as Av:
1 0 2 1 -1 0 -1
3 2 0 -1 0 0 0
A=1y 2 2 of 2| o] 270V
1 -2 8 5 -3 0 -3

Since this is possible with A = 0, it follows that v is an eigenvector of A with eigenvalue A = 0.
We have that det(A) = 0, since A is a 4 x 4 matrix with rk(4) = 2 < 4 from (a). An alternative
argument is that since A = 0 is an eigenvalue of A from (b), it is a solution of |[A — \I| =0,
and this means that |A —0-1| =0, or |A| = 0. It is also possible to compute det(A) directly,
for instance using cofactor expansion.

We have that |S| =1-2-4 =8 # 0, hence S has an inverse matrix S~!. For any eigenvalue
A # 0 of S, there is an eigenvector v such that

1
Sv=X\v = v=Sw=\v = X-V:Sflv

by multiplication with S~ and 1/\. It follows that if A # 0 is an eigenvalue of S, then 1/ is
an eigenvalue of S~1. Hence the eigenvalues of S~! are 1,1/2,1/4 > 0, and it follows that S~!
is positive definite. We comment that since S is symmetric and invertible, the inverse S~! is
symmetric, so that the definiteness of S~! is well-defined. This is implicit in the question and
not necessary to prove, but we include an argument: We have that

1 Cii Ci2 Ci3
ST = 3 Co1 Co (3
C31 C32 Csy

where Cj; are the cofactors of S. Since S is symmetric, it follows that C;; = Cj;, and S~ is
therefore also a symmetric matrix.

Question 2.

(a) We use superposition to solve the linear differential equation y” 4+ 3 = 6e3: To find the

homogeneous solution yy, we consider the homogeneous differential equation y” + 3 = 0 with
characteristic equation 72 + r = 0. It has two distinct solutions » = 0, r = —1, and therefore

yp=Cre’ + Cret = Cy + Core™

To find a particular solution y,, we consider the differential equation y” + 3y’ = 6e3t and use
the method of undetermined coefficients: We try to find solutions of the form y = Ae3, which
gives 4/ = 3Ae3" and " = 9Ae3. When we substitute this into the differential equation, we
get (9A4e3t) + 3(Ae®) = 6e3t, which gives 124 = 6, or A = 1/2. The general solution of the
differential equation is therefore

1
yzyh+yp=C1+Cgeft+§egt
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(b) The differential equation t(y’ —y) = y can be written ¢ —y = y/t, or y/ = y+y/t = y(1+1/t),
and it is both linear and separable. We choose to solve it as a separable differential equation:

1 1 1 1 1
y’:y(1+> = —y=1+- = /dy:/(1+>dt
t Y t Y t

This gives In|y| =t +1In|t| + C, or |y| = et HHC = ¢t . |t] . €€, We therefore find the general
solution y = K te! with K = +e®.

(c) We use superposition to solve the linear difference equation y19 + 3yi+1 — 4y, = 5: To find
the homogeneous solution yf, we consider the characteristic equation 2 + 3r — 4 = 0, with
two distinct roots r = 1, r = —4, and therefore

yr =C1- 1"+ Cy- (—4)' = C1 + Cy - (—4)'

To find a particular solution vy, we consider the difference equation y;12 + 3yr+1 — 4y = 5.
We try to find a constant solution y; = A, which gives y;+1 = y+2 = A. When we substitute
this into the difference equation, we get A+3A—4A =5, or 0- A = 5, which has no solutions.
Next, we try to find solutions of the form y, = A-t = At, which gives y;11 = A(t+1) = At+ A,
and yi42 = A(t +2) = At + 2A. When we substitute this into the difference equation, we get

(At +2A)+3(At+A) —4(At)=5 = BHA=5
We find the solution A =1, or y¥ = t. The general solution is therefore given by
ye=yl +yf =Cr+Co (—4) +1t

(d) We let A be the 3 x 3 matrix such that the system of differential equations can be written in
the form y’ = Ay. The eigenvalues of A is given the characteristic equation

1-Xx 1 2

det(A—M)=| -1 —-Xx 1 |=0
0 1 3-2A

We use cofactor expansion along the first column to compute the determinant, and get
(1=NEAB=A) =) = (=D(B=XN)=2)=(1 =N\ =31—=1)+ (1 -\

We see that 1 — X is a common factor, and write the characteristic equation in factorized form
(1= A) (A2 = 3)\) = A(1 — A)(\ — 3) = 0. This gives three distinct eigenvalues A\; = 0, Ay = 1,
and A3 = 3, and this means that A is diagonalizable. We find a base {v;} for E, in each case:
We use the Gaussian processes

1 1 2 11 2 0 1 2 1 -1 1

Eo: (-1 0 1] = (0o 1 3 Ei:|l-1 -1 1] >0 1 2
0 1 3 000 0 1 2 0 0 0
2 1 2 -1 -3 1

Es:|l-1 -3 1) =10 1 0
0 1 0 0 0 0

and back substitution, and find base vectors vi = (1,-3,1), vo = (3,-2,1), v3 =(1,0,1) for
the three eigenspaces. The general solution is therefore given by

1 3 1
y = C’lvleht + CQVQG/\Qt + C3V3€/\3t =C1|-3|+C| -2 et +Cs51|0 €3t
1 1 1

The initial condition y(0) = (5, —5, 3) gives the linear system Cjv; + Cava + C3vs = y(0), or
P .C =y(0), where P = (vi|va]vs) and C is the column vector given by C = (Cy,Ca, C3).
We solve this using Gaussian elimination:

1 3 1|5 1 3 1] 5 1 3 1|5
-3 -2 0|-5] =0 7 3|10 —=1(0 -2 0]-2
1 1 1| 3 0 -2 0| -2 0 0 3] 3
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Back substitution gives C; = Co = (3 = 1, and we find the particular solution

1 3 1
y=|-3]+[-2|e+|0]e*
1 1 1

Question 3.

(a) We write down the symmetric matrix A of the quadratic form g and determine its definiteness:
We find that

-1

L
O NN
= O =

The leading principal minors are D1 =3, Dy =3—-1=2, D3 =3(3) — 1(—1) +4(2 —4) =2,
and Dy = |A| = 2, since the determinant is given by cofactor expansion along the last row:

4 -1 3
2 1 |(+1-11
7 0 4

1 4 -1

Dy=—-(-1)-1 2 1|+4-D3=-2—-448=2

2 7 0
Since all leading principal minors are positive, g is a positive definite quadratic form.

(b) The Kuhn-Tucker problem is in standard form and has Lagrangian £ = e’ x — A(xT Ax — 18),
where e = (1,1,1,1) is considered as a column vector. The first order conditions (FOC) can
therefore be written e — A\ - 24x = 0, the constraint (C) can be written x’ Ax < 18, and the
complementary slackness conditions can be written A > 0 and A(x? Ax — 18) = 0. Together,
the conditions FOC 4 C + CSC are the Kuhn-Tucker conditions of the problem:

FOC+C+CSC: e—2MAx =0, xTAx <18, A >0, A(xT Ax — 18) =0
c) In case g(x) < 18, there 1s no condition, and in case g(x) = 18, the 1S given by
I 18, there i diti di 18, the NDCQ is given b
rkJ =rk (g, g, 9. gu) =1

This condition fails if and only if the rk J = 0, or g;, = g;, = g_ = g;, = 0. This is the condition
for stationary points of g, and can be written 2Ax = 0. Since |A| = Dy = 2 # 0 from (a), A is
invertible, and x = 0 is the only stationary point of g. This point does not satisfy g(x) = 18.
We conclude that there are no admissible points where NDCQ does not hold.

(d) We see that if A = 0, then the FOC’s give e = 0, or (1,1,1,1) = (0,0,0,0), which is clearly
impossible. By the CSC’s, we must have that A > 0 and that g(x) = 18. To solve for candidate
points in this case, we consider the FOC’s, which give a linear system of equations:

1 1
Mx=e — X = oye te = (t,t,t,t) with ¢ o

We use Gauss to solve this linear system, and start by switching the first two rows:

31 4 —11t¢ 11 2 1|t

11 2 1|t N 31 4 —11t¢

4 2 7 0]t 4 2 7 0]t

-1 1 0 4]t -1 1 0 4]t

We then use a standard Gaussian process:

1 1 2 11t 1 1 2 1 t 1 1 2 1 t
3 1 4 —1]|t N 0 -2 -2 —4|-2t N 0 —2 -2 —4| -2t
4 2 7 0]t 0 -2 -1 —4| -3t 0O 0 1 0] —t
-1 1 0 4]t 0o 2 2 5| 2t 0 0 0 1 0

Back substitution gives w = 0, z = —t, —2y = 2z + 4w — 2t = 2(—t) + 4(0) — 2t = —4t, or
y=2t,andz =—-y—2z—w+t=-2t—2(—t) — 0+t =1t. Hence (z,y, z,w) = (t,2t,—t,0),
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which can be written x = ¢ts with s = (1,2,—1,0) and ¢ = 1/(2)\). An alternative method is
to write down the FOC’s based on a direct computation:

Ll =1—\6z+2y+8z—2w) =0
L, =1-X2x+2y+4z+42w) =0
L. =1-X8z+4y+142) =0
L, =1—\-2x+2y+8w)=0

Also with this method, we see that A # 0, and we can solve each equation for 1/X, and put
the expressions for 1/ in the four FOC’s equal to each other. This gives the homogeneous
linear system

6z + 2y + 8z — 2w =22 + 2y + 4z + 2w = de +4z - 2w =10
20 + 2y + 4z 4+ 2w = 8x + 4y + 14z —6x —2y —10z4+2w =0
8xr + 4y + 14z = —2x + 2y + 8w 10z + 2y + 142 — 8w =0

We can solve this system with Gaussian elimination: We get that z is a free variable, and
back substitution gives w = 0, y = —2z, and © = —z. Hence (z,y, z,w) = (—z, -2z, 2,0), and
when we put this into the first FOC, we get 1/\ = —6z — 42+ 8z = —2z. Hence z = —1/(2)),
and (z,y,z,w) = 1/(2X) - (1,2,—1,0) = ts, the same solution as we obtained using matrices
above. With either method for solving the FOC’s, we continue to compute g(x):
g(x)=xTAx = g(ts) = (ts)T A(ts) = ts” A(ts) = t*(s” As) = t?g(s)
The constraint can therefore be written
g(t,2t,—t,0) = t%g(1,2,-1,0) =t*-2=18 = t*=9 = t=43=3
since A > 0. This means that (z,y,z,w) = (3,6,—3,0), and since t = 1/(2\), we have
2A =1/3, or A = 1/6. Hence there is a unique candidate point (z,y, z,w; A) = (3,6,—3,0;1/6)
that satisfied the Kuhn-Tucker conditions. Since
1
h(x)=L(x;1/6)=x4+y+2z+w— 8 (9(z,y,z,w) — 18)
has Hessian H(h) = —(1/6)-H(g) = —(1/6) - 2A, and A is positive definite from (a), it follows
that H(h) is negative definite, and h is a concave function. Hence, it follows by the SOC that
fmax = f(3,6,—3,0) = 6 is the maximum value.
Since A is a positive definite symmetric matrix, it has positive eigenvalues Ay, Az, Az, Ay > 0,
and there is an orthogonal change of base x = Pu such that g(x) = Aj-u?+ Ao u3+Ag-u3+A\g-u3
in the new coordinates u = (u1, u2, ug, us). Since D is given by the constraint g(x) < 18, which
can be written as
Al-u%+)\2-u§+)\3~u§+/\4-ui§ 18
it follows that u? < 18/); for i = 1,2, 3,4, or that

—\/18/)\i S Uq < \/18/)\i

Hence the set D is bounded in the new u = (uy, ug2, us, us) coordinate system, and it is clearly
a closed set. Therefore, D is a compact set.



