Solutions	Final exam in ELE 3781 Mathematics elective
Date	December 2nd, 2021 at 0900 - 1200

Question 1.

(a) We use Gaussian elimination to find the rank of A:

$$A = \begin{pmatrix} 1 & 0 & 2 & 1 \\ 3 & 2 & 0 & -1 \\ 4 & 2 & 2 & 0 \\ 1 & -2 & 8 & 5 \end{pmatrix} \to \begin{pmatrix} 1 & 0 & 2 & 1 \\ 0 & 2 & -6 & -4 \\ 0 & -2 & 6 & 4 \end{pmatrix} \to \begin{pmatrix} 1 & 0 & 2 & 1 \\ 0 & 2 & -6 & -4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Since there are two pivot positions, we have that rk(A) = 2. Since the pivot positions are in the first two columns, the first two column vectors of A form a base $B = \{(1, 3, 4, 1), (0, 2, 2, -2)\}$ of Col(A).

(b) We check if **v** is an eigenvector of A by computing A**v** and try to write the product as λ **v**:

$$A\mathbf{v} = \begin{pmatrix} 1 & 0 & 2 & 1 \\ 3 & 2 & 0 & -1 \\ 4 & 2 & 2 & 0 \\ 1 & -2 & 8 & 5 \end{pmatrix} \cdot \begin{pmatrix} -1 \\ 0 \\ 2 \\ -3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} = 0 \cdot \begin{pmatrix} -1 \\ 0 \\ 2 \\ -3 \end{pmatrix} = 0 \cdot \mathbf{v}$$

Since this is possible with $\lambda = 0$, it follows that **v** is an eigenvector of A with eigenvalue $\lambda = 0$.

- (c) We have that $\det(A) = 0$, since A is a 4×4 matrix with $\operatorname{rk}(A) = 2 < 4$ from (a). An alternative argument is that since $\lambda = 0$ is an eigenvalue of A from (b), it is a solution of $|A \lambda I| = 0$, and this means that $|A 0 \cdot I| = 0$, or |A| = 0. It is also possible to compute $\det(A)$ directly, for instance using cofactor expansion.
- (d) We have that $|S| = 1 \cdot 2 \cdot 4 = 8 \neq 0$, hence S has an inverse matrix S^{-1} . For any eigenvalue $\lambda \neq 0$ of S, there is an eigenvector **v** such that

$$S\mathbf{v} = \lambda \mathbf{v} \quad \Rightarrow \quad \mathbf{v} = S^{-1}\lambda \mathbf{v} = \lambda S^{-1}\mathbf{v} \quad \Rightarrow \quad \frac{1}{\lambda} \cdot \mathbf{v} = S^{-1}\mathbf{v}$$

by multiplication with S^{-1} and $1/\lambda$. It follows that if $\lambda \neq 0$ is an eigenvalue of S, then $1/\lambda$ is an eigenvalue of S^{-1} . Hence the eigenvalues of S^{-1} are 1, 1/2, 1/4 > 0, and it follows that S^{-1} is positive definite. We comment that since S is symmetric and invertible, the inverse S^{-1} is symmetric, so that the definiteness of S^{-1} is well-defined. This is implicit in the question and not necessary to prove, but we include an argument: We have that

$$S^{-1} = \frac{1}{8} \begin{pmatrix} C_{11} & C_{12} & C_{13} \\ C_{21} & C_{22} & C_{23} \\ C_{31} & C_{32} & C_{3n} \end{pmatrix}^{T}$$

where C_{ij} are the cofactors of S. Since S is symmetric, it follows that $C_{ij} = C_{ji}$, and S^{-1} is therefore also a symmetric matrix.

Question 2.

(a) We use superposition to solve the linear differential equation $y'' + y' = 6e^{3t}$: To find the homogeneous solution y_h , we consider the homogeneous differential equation y'' + y' = 0 with characteristic equation $r^2 + r = 0$. It has two distinct solutions r = 0, r = -1, and therefore

$$y_h = C_1 e^0 + C_2 e^{-t} = C_1 + C_2 e^{-t}$$

To find a particular solution y_p , we consider the differential equation $y'' + y' = 6e^{3t}$ and use the method of undetermined coefficients: We try to find solutions of the form $y = Ae^{3t}$, which gives $y' = 3Ae^{3t}$ and $y'' = 9Ae^{3t}$. When we substitute this into the differential equation, we get $(9Ae^{3t}) + 3(Ae^{3t}) = 6e^{3t}$, which gives 12A = 6, or A = 1/2. The general solution of the differential equation is therefore

$$y = y_h + y_p = C_1 + C_2 e^{-t} + \frac{1}{2} e^{3t}$$

(b) The differential equation t(y'-y) = y can be written y'-y = y/t, or y' = y + y/t = y(1+1/t), and it is both linear and separable. We choose to solve it as a separable differential equation:

$$y' = y\left(1+\frac{1}{t}\right) \quad \Rightarrow \quad \frac{1}{y}y' = 1+\frac{1}{t} \quad \Rightarrow \quad \int \frac{1}{y}\,\mathrm{d}y = \int \left(1+\frac{1}{t}\right)\,\mathrm{d}t$$

This gives $\ln |y| = t + \ln |t| + C$, or $|y| = e^{t + \ln |t| + C} = e^t \cdot |t| \cdot e^C$. We therefore find the general solution $y = K te^t$ with $K = \pm e^C$.

(c) We use superposition to solve the linear difference equation $y_{t+2} + 3y_{t+1} - 4y_t = 5$: To find the homogeneous solution y_t^h , we consider the characteristic equation $r^2 + 3r - 4 = 0$, with two distinct roots r = 1, r = -4, and therefore

$$y_t^h = C_1 \cdot 1^t + C_2 \cdot (-4)^t = C_1 + C_2 \cdot (-4)^t$$

To find a particular solution y_t^p , we consider the difference equation $y_{t+2} + 3y_{t+1} - 4y_t = 5$. We try to find a constant solution $y_t = A$, which gives $y_{t+1} = y_{t+2} = A$. When we substitute this into the difference equation, we get A + 3A - 4A = 5, or $0 \cdot A = 5$, which has no solutions. Next, we try to find solutions of the form $y_t = A \cdot t = At$, which gives $y_{t+1} = A(t+1) = At + A$, and $y_{t+2} = A(t+2) = At+2A$. When we substitute this into the difference equation, we get

$$(At+2A)+3(At+A)-4(At)=5 \quad \Rightarrow \quad 5A=5$$

We find the solution A = 1, or $y_t^p = t$. The general solution is therefore given by

$$y_t = y_t^h + y_t^p = C_1 + C_2 \cdot (-4)^t + t$$

(d) We let A be the 3×3 matrix such that the system of differential equations can be written in the form $\mathbf{y}' = A\mathbf{y}$. The eigenvalues of A is given the characteristic equation

$$\det(A - \lambda I) = \begin{vmatrix} 1 - \lambda & 1 & 2 \\ -1 & -\lambda & 1 \\ 0 & 1 & 3 - \lambda \end{vmatrix} = 0$$

We use cofactor expansion along the first column to compute the determinant, and get

$$(1-\lambda)(-\lambda(3-\lambda)-1) - (-1)((3-\lambda)-2) = (1-\lambda)(\lambda^2 - 3\lambda - 1) + (1-\lambda)$$

We see that $1 - \lambda$ is a common factor, and write the characteristic equation in factorized form $(1-\lambda)(\lambda^2-3\lambda) = \lambda(1-\lambda)(\lambda-3) = 0$. This gives three distinct eigenvalues $\lambda_1 = 0, \lambda_2 = 1$, and $\lambda_3 = 3$, and this means that A is diagonalizable. We find a base $\{\mathbf{v}_i\}$ for E_{λ_i} in each case: We use the Gaussian processes

$$E_{0}: \begin{pmatrix} 1 & 1 & 2 \\ -1 & 0 & 1 \\ 0 & 1 & 3 \end{pmatrix} \to \begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & 3 \\ 0 & 0 & 0 \end{pmatrix} \qquad E_{1}: \begin{pmatrix} 0 & 1 & 2 \\ -1 & -1 & 1 \\ 0 & 1 & 2 \end{pmatrix} \to \begin{pmatrix} -1 & -1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix}$$
$$E_{3}: \begin{pmatrix} -2 & 1 & 2 \\ -1 & -3 & 1 \\ 0 & 1 & 0 \end{pmatrix} \to \begin{pmatrix} -1 & -3 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

and back substitution, and find base vectors $\mathbf{v}_1 = (1, -3, 1)$, $\mathbf{v}_2 = (3, -2, 1)$, $\mathbf{v}_3 = (1, 0, 1)$ for the three eigenspaces. The general solution is therefore given by

$$\mathbf{y} = C_1 \mathbf{v}_1 e^{\lambda_1 t} + C_2 \mathbf{v}_2 e^{\lambda_2 t} + C_3 \mathbf{v}_3 e^{\lambda_3 t} = C_1 \begin{pmatrix} 1\\ -3\\ 1 \end{pmatrix} + C_2 \begin{pmatrix} 3\\ -2\\ 1 \end{pmatrix} e^t + C_3 \begin{pmatrix} 1\\ 0\\ 1 \end{pmatrix} e^{3t}$$

The initial condition $\mathbf{y}(0) = (5, -5, 3)$ gives the linear system $C_1\mathbf{v}_1 + C_2\mathbf{v}_2 + C_3\mathbf{v}_3 = \mathbf{y}(0)$, or $P \cdot \mathbf{C} = \mathbf{y}(0)$, where $P = (\mathbf{v}_1 | \mathbf{v}_2 | \mathbf{v}_3)$ and \mathbf{C} is the column vector given by $\mathbf{C} = (C_1, C_2, C_3)$. We solve this using Gaussian elimination:

$$\begin{pmatrix} 1 & 3 & 1 & | & 5 \\ -3 & -2 & 0 & | & -5 \\ 1 & 1 & 1 & | & 3 \end{pmatrix} \to \begin{pmatrix} 1 & 3 & 1 & | & 5 \\ 0 & 7 & 3 & | & 10 \\ 0 & -2 & 0 & | & -2 \end{pmatrix} \to \begin{pmatrix} 1 & 3 & 1 & | & 5 \\ 0 & -2 & 0 & | & -2 \\ 0 & 0 & 3 & | & 3 \end{pmatrix}$$

Back substitution gives $C_1 = C_2 = C_3 = 1$, and we find the particular solution

$$\mathbf{y} = \begin{pmatrix} 1\\ -3\\ 1 \end{pmatrix} + \begin{pmatrix} 3\\ -2\\ 1 \end{pmatrix} e^t + \begin{pmatrix} 1\\ 0\\ 1 \end{pmatrix} e^{3t}$$

Question 3.

(a) We write down the symmetric matrix A of the quadratic form g and determine its definiteness: We find that

$$A = \begin{pmatrix} 3 & 1 & 4 & -1 \\ 1 & 1 & 2 & 1 \\ 4 & 2 & 7 & 0 \\ -1 & 1 & 0 & 4 \end{pmatrix}$$

The leading principal minors are $D_1 = 3$, $D_2 = 3 - 1 = 2$, $D_3 = 3(3) - 1(-1) + 4(2 - 4) = 2$, and $D_4 = |A| = 2$, since the determinant is given by cofactor expansion along the last row:

$$D_4 = -(-1) \cdot \begin{vmatrix} 1 & 4 & -1 \\ 1 & 2 & 1 \\ 2 & 7 & 0 \end{vmatrix} + 1 \cdot \begin{vmatrix} 3 & 4 & -1 \\ 1 & 2 & 1 \\ 4 & 7 & 0 \end{vmatrix} + 4 \cdot D_3 = -2 - 4 + 8 = 2$$

. .

Since all leading principal minors are positive, g is a positive definite quadratic form.

(b) The Kuhn-Tucker problem is in standard form and has Lagrangian $\mathcal{L} = \mathbf{e}^T \mathbf{x} - \lambda(\mathbf{x}^T A \mathbf{x} - 18)$, where $\mathbf{e} = (1, 1, 1, 1)$ is considered as a column vector. The first order conditions (FOC) can therefore be written $\mathbf{e} - \lambda \cdot 2A\mathbf{x} = \mathbf{0}$, the constraint (C) can be written $\mathbf{x}^T A \mathbf{x} \leq 18$, and the complementary slackness conditions can be written $\lambda \geq 0$ and $\lambda(\mathbf{x}^T A \mathbf{x} - 18) = 0$. Together, the conditions FOC + C + CSC are the Kuhn-Tucker conditions of the problem:

FOC+C+CSC:
$$\mathbf{e} - 2\lambda A \mathbf{x} = \mathbf{0}, \ \mathbf{x}^T A \mathbf{x} \le 18, \ \lambda \ge 0, \ \lambda (\mathbf{x}^T A \mathbf{x} - 18) = 0$$

(c) In case $g(\mathbf{x}) < 18$, there is no condition, and in case $g(\mathbf{x}) = 18$, the NDCQ is given by

$$\operatorname{rk} J = \operatorname{rk} \begin{pmatrix} g'_x & g'_y & g'_z & g'_w \end{pmatrix} = 1$$

This condition fails if and only if the rk J = 0, or $g'_x = g'_y = g'_z = g'_w = 0$. This is the condition for stationary points of g, and can be written $2A\mathbf{x} = \mathbf{0}$. Since $|A| = D_4 = 2 \neq 0$ from (a), A is invertible, and $\mathbf{x} = \mathbf{0}$ is the only stationary point of g. This point does not satisfy $g(\mathbf{x}) = 18$. We conclude that there are no admissible points where NDCQ does not hold.

(d) We see that if $\lambda = 0$, then the FOC's give $\mathbf{e} = \mathbf{0}$, or (1, 1, 1, 1) = (0, 0, 0, 0), which is clearly impossible. By the CSC's, we must have that $\lambda > 0$ and that $g(\mathbf{x}) = 18$. To solve for candidate points in this case, we consider the FOC's, which give a linear system of equations:

$$2\lambda A\mathbf{x} = \mathbf{e} \quad \rightarrow \quad A\mathbf{x} = \frac{1}{2\lambda}\mathbf{e} = t\mathbf{e} = (t, t, t, t) \text{ with } t = \frac{1}{2\lambda}$$

We use Gauss to solve this linear system, and start by switching the first two rows:

$$\begin{pmatrix} 3 & 1 & 4 & -1 & | & t \\ 1 & 1 & 2 & 1 & | & t \\ 4 & 2 & 7 & 0 & | & t \\ -1 & 1 & 0 & 4 & | & t \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 2 & 1 & | & t \\ 3 & 1 & 4 & -1 & | & t \\ 4 & 2 & 7 & 0 & | & t \\ -1 & 1 & 0 & 4 & | & t \end{pmatrix}$$

We then use a standard Gaussian process:

$$\begin{pmatrix} 1 & 1 & 2 & 1 & | t \\ 3 & 1 & 4 & -1 & | t \\ 4 & 2 & 7 & 0 & | t \\ -1 & 1 & 0 & 4 & | t \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 2 & 1 & | t \\ 0 & -2 & -2 & -4 & | -2t \\ 0 & 2 & 2 & 5 & | 2t \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 2 & 1 & | t \\ 0 & -2 & -2 & -4 & | -2t \\ 0 & 0 & 1 & 0 & | -t \\ 0 & 0 & 0 & 1 & | 0 \end{pmatrix}$$

Back substitution gives w = 0, z = -t, -2y = 2z + 4w - 2t = 2(-t) + 4(0) - 2t = -4t, or y = 2t, and x = -y - 2z - w + t = -2t - 2(-t) - 0 + t = t. Hence (x, y, z, w) = (t, 2t, -t, 0),

which can be written $\mathbf{x} = t\mathbf{s}$ with $\mathbf{s} = (1, 2, -1, 0)$ and $t = 1/(2\lambda)$. An alternative method is to write down the FOC's based on a direct computation:

$$\mathcal{L}'_{x} = 1 - \lambda(6x + 2y + 8z - 2w) = 0$$

$$\mathcal{L}'_{y} = 1 - \lambda(2x + 2y + 4z + 2w) = 0$$

$$\mathcal{L}'_{z} = 1 - \lambda(8x + 4y + 14z) = 0$$

$$\mathcal{L}'_{w} = 1 - \lambda(-2x + 2y + 8w) = 0$$

Also with this method, we see that $\lambda \neq 0$, and we can solve each equation for $1/\lambda$, and put the expressions for $1/\lambda$ in the four FOC's equal to each other. This gives the homogeneous linear system

$$6x + 2y + 8z - 2w = 2x + 2y + 4z + 2w \implies 4x + 4z - 2w = 0$$

$$2x + 2y + 4z + 2w = 8x + 4y + 14z \qquad -6x - 2y - 10z + 2w = 0$$

$$8x + 4y + 14z = -2x + 2y + 8w \qquad 10x + 2y + 14z - 8w = 0$$

We can solve this system with Gaussian elimination: We get that z is a free variable, and back substitution gives w = 0, y = -2z, and x = -z. Hence (x, y, z, w) = (-z, -2z, z, 0), and when we put this into the first FOC, we get $1/\lambda = -6z - 4z + 8z = -2z$. Hence $z = -1/(2\lambda)$, and $(x, y, z, w) = 1/(2\lambda) \cdot (1, 2, -1, 0) = ts$, the same solution as we obtained using matrices above. With either method for solving the FOC's, we continue to compute $g(\mathbf{x})$:

$$g(\mathbf{x}) = \mathbf{x}^T A \mathbf{x} \quad \Rightarrow \quad g(t\mathbf{s}) = (t\mathbf{s})^T A(t\mathbf{s}) = t\mathbf{s}^T A(t\mathbf{s}) = t^2(\mathbf{s}^T A \mathbf{s}) = t^2 g(\mathbf{s})$$

The constraint can therefore be written

$$g(t, 2t, -t, 0) = t^2 g(1, 2, -1, 0) = t^2 \cdot 2 = 18 \quad \Rightarrow \quad t^2 = 9 \quad \Rightarrow \quad t = \pm 3 = 3$$

since $\lambda > 0$. This means that (x, y, z, w) = (3, 6, -3, 0), and since $t = 1/(2\lambda)$, we have $2\lambda = 1/3$, or $\lambda = 1/6$. Hence there is a unique candidate point $(x, y, z, w; \lambda) = (3, 6, -3, 0; 1/6)$ that satisfied the Kuhn-Tucker conditions. Since

$$h(\mathbf{x}) = \mathcal{L}(\mathbf{x}; 1/6) = x + y + z + w - \frac{1}{6} \left(g(x, y, z, w) - 18 \right)$$

has Hessian $H(h) = -(1/6) \cdot H(g) = -(1/6) \cdot 2A$, and A is positive definite from (a), it follows that H(h) is negative definite, and h is a concave function. Hence, it follows by the SOC that $f_{\text{max}} = f(3, 6, -3, 0) = 6$ is the maximum value.

(e) Since A is a positive definite symmetric matrix, it has positive eigenvalues $\lambda_1, \lambda_2, \lambda_3, \lambda_4 > 0$, and there is an orthogonal change of base $\mathbf{x} = P\mathbf{u}$ such that $g(\mathbf{x}) = \lambda_1 \cdot u_1^2 + \lambda_2 \cdot u_2^2 + \lambda_3 \cdot u_3^2 + \lambda_4 \cdot u_4^2$ in the new coordinates $\mathbf{u} = (u_1, u_2, u_3, u_4)$. Since D is given by the constraint $g(\mathbf{x}) \leq 18$, which can be written as

$$\lambda_1 \cdot u_1^2 + \lambda_2 \cdot u_2^2 + \lambda_3 \cdot u_3^2 + \lambda_4 \cdot u_4^2 \le 18$$

it follows that $u_i^2 \leq 18/\lambda_i$ for i = 1, 2, 3, 4, or that

$$-\sqrt{18/\lambda_i} \le u_i \le \sqrt{18/\lambda_i}$$

Hence the set D is bounded in the new $\mathbf{u} = (u_1, u_2, u_3, u_4)$ coordinate system, and it is clearly a closed set. Therefore, D is a compact set.