Multiple Choice 1 MET1180 - Matematikk for siviløkonomer

12 December 2018
English Translation

The problem set has 15 multiple choice problems. Correct answer gives 3 points, incorrect answer gives -1 points, answer (E) gives 0 points. Only one answer is correct.

Problem 1

The remainder of the polynomial division $\left(3 x^{2}-13 x+19\right):(x-2)$ is
(A) 0
(B) 1
(C) 5
(D) 6
(E) I choose not to answer this problem.

Problem 2

We have a function $f(x)$ with the following graph:

Figure 1: The graph of $f(x)$
Which statement is not correct?
(A) $f(3)=0$
(B) $f^{\prime}(3)<0$
(C) $f^{\prime}(x)$ changes sign between $x=4,2$ and $x=5,8$
(D) $f^{\prime}(2)>f^{\prime}(5)$
(E) I choose not to answer this problem.

Problem 3

The price of a stock has precisely doubled in 12 years. It gives an annual growth factor of
(A) $2^{\frac{1}{12}}$
(B) 7%
(C) 1,07
(D) $\frac{13}{12}$
(E) I choose not to answer this problem.

Problem 4

We have a quadratic function $f(x)$ with minimum in the point $(x, y)=(4,1)$ and $f(2)=3$. Then
(A) $f(x)=(x+4)^{2}-1$
(B) $f(x)=(x-4)^{2}+1$
(C) $f(x)=\frac{1}{2} x^{2}-4 x+9$
(D) $f(x)=-\frac{1}{2}(x-4)^{2}+1$
(E) I choose not to answer this problem.

Problem 5

A fixed amount 90000 (the annuity) is to be payed annually for 20 years with the first payment three years from now. Suppose the interest is 4% with annual compounding. Then the geometric series which gives the present value of this cash flow is
(A)

$$
\frac{90000}{1,04^{3}}+\frac{90000}{1,04^{4}}+\cdots+\frac{90000}{1,04^{22}}+\frac{90000}{1,04^{23}}
$$

(B) $\frac{90000}{1,04^{3}}+\frac{90000}{1,04^{4}}+\cdots+\frac{90000}{1,04^{21}}+\frac{90000}{1,04^{22}}$
(C) $\frac{90000}{1,04}+\frac{90000}{1,04^{2}}+\cdots+\frac{90000}{1,04^{19}}+\frac{90000}{1,04^{20}}$
(D) $\quad 90000+90000 \cdot 1,04+\cdots+90000 \cdot 1,04^{18}+90000 \cdot 1,04^{19}$
(E) I choose not to answer this problem.

Problem 6

The equation $\sqrt{2 x+3}=x+4$ has
(A) no solutions
(B) one solution
(C) two solutions
(D) three solutions
(E) I choose not to answer this problem.

Problem 7

Hege deposits 300000 into an account earning 2,4\% interest and with continuous compounding. How long time will it take before the balance is 500000 ?
(A) $\frac{\ln 5-\ln 3}{0,024}$ years
(B) 23 years
(C) $\frac{\ln 5-\ln 3}{\ln (1,024)}$ years
(D) 27,78 years
(E) I choose not to answer this problem.

Problem 8

We have a cost function $K(x)=0,01 x^{2}+15 x+1600$. Then the minimal average unit cost is
(A) 400
(B) 23
(C) 40
(D) 9200
(E) I choose not to answer this problem.

Problem 9

We have the function $f(x)=3 \ln (x)-0,5 x+10, x>0$. Which statement is not correct?
(A) $f(x)$ is increasing in the interval $\langle 0,4]$
(B) $f^{\prime}(x)$ is negative in the interval $\langle 7, \infty\rangle$
(C) $f(x)$ has a global maximum point for $x=6$
(D) $f^{\prime \prime}(3)=\frac{1}{3}$
(E) I choose not to answer this problem.

Problem 10

Let p be the price of a commodity and suppose $D(p)=75 e^{-0,2 p}$ is the demand function. Which statement is correct?
(A) If $p<10$ the demand is inelastic
(B) If $p<5$ the demand is elastic
(C) If $p>5$ the demand is elastic
(D) If $p=10$ the demand is unit elastic
(E) I choose not to answer this problem.

Problem 11

We have

$$
a=\lim _{x \rightarrow 1} \frac{e^{x}-e}{x-\sqrt{x}}
$$

Which statement is correct?
(A) $a=3 e$
(B) $a=2 e$
(C) $a=\frac{e}{2}$
(D) $a=\frac{2}{e}$
(E) I choose not to answer this problem.

Problem 12

We have a function $f(x)$ with derivative function $f^{\prime}(x)$ which has the following graph:

Figure 2: The graph of $f^{\prime}(x)$
Which statement is correct?
(A) $f(x)$ is concave in the interval [$\left.5-\frac{1}{\sqrt{3}}, 5+\frac{1}{\sqrt{3}}\right]$
(B) $f(x)$ is convex in the interval $[7,8]$
(C) $f(x)$ is concave
(D) $f(x)$ is convex in the interval [1,5]
(E) I choose not to answer this problem.

Problem 13

Suppose $P_{2}(x)$ is the degree 2 Taylor polynomial of $f(x)=\ln (x)$ in the point $x=1$.
Which statement is correct?
(A) The distance from $P_{2}(2)$ to $f(2)$ is more than 0,3
(B) The distance from $P_{2}(2)$ to $f(2)$ is between 0,2 and 0,3
(C) The distance from $P_{2}(2)$ to $f(2)$ is between 0,1 and 0,2
(D) The distance from $P_{2}(2)$ to $f(2)$ is between 0 and 0,1
(E) I choose not to answer this problem.

Problem 14

We have a curve implicitly defined by the equation $4 x^{2}-7 x y+4 y^{2}=16$.
Which statement is correct?
(A) There is only one point on the curve with x-coordinate 4 and the slope of the tangent at this point is equal to -1
(B) There are two points on the curve with x-coordinate 4 and the product of the slopes of the tangents at these points is $-2,75$
(C) There are two points on the curve with x-coordinate 4 and the product of the slopes of the tangents at these points is -64
(D) There are two points on the curve with x-coordinate 4 and the product of the slopes of the tangents at these points is $\frac{1024}{425}$
(E) I choose not to answer this problem.

Problem 15

We have the function expression $f(x)=x^{3}-6 x^{2}+9 x+4$.
Which statement is correct?
(A) If the domain of definition D_{f} is $[4, \infty\rangle$ then $f(x)$ has an inverse function.
(B) If the domain of definition D_{f} is $[3, \infty\rangle$ then $f(x)$ has no inverse function.
(C) If the domain of definition D_{f} is $[0,3]$ then $f(x)$ has an inverse function.
(D) If the domain of definition D_{f} is $\langle-\infty, 1]$ then $f(x)$ has no inverse function.
(E) I choose not to answer this problem.

Formelsamling

1 Finansmatematikk

Geometriske rekker. En endelig geometrisk rekke har sum

$$
S_{n}=a_{1} \cdot \frac{1-k^{n}}{1-k}
$$

og en uendelige geometrisk rekke har sum

$$
S=a_{1} \cdot \frac{1}{1-k} \quad \text { når }|k|<1
$$

Nåverdier. Nåverdien K_{0} til en innbetaling K_{n} er henholdsvis

$$
K_{0}=\frac{K_{n}}{(1+r)^{n}} \quad \text { og } \quad K_{0}=\frac{K_{n}}{e^{r n}}
$$

ved diskret og kontinuerlig diskonteringsrente.

2 Integrasjon

Integrasjonsmetoder.

a) Delvis integrasjon:

$$
\int u^{\prime} v \mathrm{~d} x=u v-\int u v^{\prime} \mathrm{d} x
$$

b) Substitusjon:

$$
\int f(u) u^{\prime} \mathrm{d} x=\int f(u) \mathrm{d} u
$$

c) Delbrøksoppspaltning:

$$
\int \frac{p x+q}{(x-a)(x-b)}=\int\left(\frac{A}{x-a}+\frac{B}{x-b}\right) \mathrm{d} x
$$

Areal. Regionen gitt ved $f(x) \leq y \leq g(x)$ for $a \leq x \leq b$ har areal

$$
A=\int_{a}^{b}(g(x)-f(x)) \mathrm{d} x
$$

3 Lineær algebra

Cramers regel. Et lineært system $A \mathbf{x}=\mathbf{b}$ der $|A| \neq 0$ har en entydig løsning gitt ved
$x_{1}=\frac{\left|A_{1}(\mathbf{b})\right|}{|A|} \quad x_{2}=\frac{\left|A_{2}(\mathbf{b})\right|}{|A|} \ldots x_{n}=\frac{\left|A_{n}(\mathbf{b})\right|}{|A|}$ $\operatorname{der} A_{i}(\mathbf{b})$ er matrisen som framkommer ved å bytte ut kolonne i fra matrisen A med \mathbf{b}.

4 Funksjoner i flere variable

Annenderivert-testen. Et stasjonært punkt $\left(x^{*}, y^{*}\right)$ for funksjonen $f(x, y)$ er et
a) lokalt minimum om $A>0$ og $A C-B^{2}>0$
b) lokalt maksimum om $A<0$ og $A C-B^{2}>0$
c) sadelpunkt om $A C-B^{2}<0$
når vi setter $A=f_{x x}^{\prime \prime}\left(x^{*}, y^{*}\right), B=f_{x y}^{\prime \prime}\left(x^{*}, y^{*}\right)$ $\operatorname{og} C=f_{y y}^{\prime \prime}\left(x^{*}, y^{*}\right)$.
Nivåkurver. På nivåkurven $f(x, y)=c$ er den deriverte $y^{\prime}=\mathrm{d} y / \mathrm{d} x$ gitt ved

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{f_{x}^{\prime}}{f_{y}^{\prime}}
$$

Totalderivasjon. Når $z=f(x, y)$, og vi har $x=x(t)$ og $y=y(t)$, så er den totalderiverte

$$
\frac{\mathrm{d} z}{\mathrm{~d} t}=\frac{\partial f}{\partial x} \cdot \frac{\mathrm{~d} x}{\mathrm{~d} t}+\frac{\partial f}{\partial y} \cdot \frac{\mathrm{~d} y}{\mathrm{~d} t}
$$

SVARARK TIL FLERVALGSEKSAMEN

ANSWER SHEET FOR MULTIPLE CHOICE EXAMINATION

Initialer：
Personal initials：

Skriv tydelig！ Fyll ut med Annuler kryss med Helt fylt rute blir ikke registrert

Write clearly！
Record answer with
Cancel a cross with
Compl．filled boxes will not be registered

Dette svararket leses kun av en maskln．Ikke noe av det du skriver utenom de definerte feltene blir lest ellier tatt hensyn til．
Ikke kluss pà arket．Be heller om et nytt．
This answer sheet is only read by a machine．Answers or comments written
on the examination paper or outside the boxes will not be graded．
Do not scribble on this sheet．
Please ask for a new answer sheet if you need one．

ID－nummer：（SKAL fylles utl）
ID－number：（MUST be filled in！）

ABCDE Мロロロロ	21	ABCDE ㅁㅁㅁㅁ	41	ABCDE	61	$A B C D E$	81	ABCDE
ㅁ⿴囗口ロロ	22	ロロロロロ	42	ロロロロ口	62	ㅁㅁ口ロロ	82	ロロロロ
口口冈ロロ	23	ロロロロロ	43	ロロロロロ	63	ロロロロロ	83	\square
ㅁ口口⿴囗口阝	24	ㅁㅁㅁ口	44	ㅁㅁㅁㅁ	64	ㅁㅁㅁ口	84	ロロロロロ
5 ㅁㅁㅁㅁ	25	ㅁㅁㅁㅁ	45	ㅁㅁㅁㅁ	65	ㅁㅁㅁㅁ	85	ㅁㅁㅁㅁ
6 ㅁㅁㅁㅁ	26	ロロロロロ	46	ロロロロロ	66	ロロロロロ	86	\square
7 ロロロロロ	27	ㅁㅁㅁ口	47	$\square \square \square \square \square$	67	ロロロロロ	87	\square
8 ロロロロロ	28	ㅁㅁㅁ口	48	ロロロロロ	68	ロロロロロ	88	\square
9 ㅁㅁㅁㅁ	29	ロロロロロ	49	ㅁㅁㅁ口	69	ㅁ口ロロロ	89	$\square \square$
10 ロロロロロ	30	ロロロロロ	50	－	70	ロロロロロ	90	ロロロロロ
ABCDE		ABCDE		ABCDE		ABCDE		ABCDE
11 ロロロロロ	31	ロロロロロ	51	\square	71	$\square \square \square \square \square$	91	$\square \square \square \square \square$
12 ㅁㅁㅁㅁ	32	ㅁㅁㅁ口	52	ㅁㅁㅁ口	72	ㅁㅁㅁ口	92	ㅁㅁㅁ
13 ロロロロロ	33	ㅁㅁㅁ口	53	$\square \square \square \square \square$	73	ㅁㅁㅁㅁ	93	$\square \square \square$
ロロロロ	34	ㅁㅁㅁㅁ	54	ロロロロロ	74	\square	94	$\square \square \square \square$
15 ㅁㅁㅁㅁㅁ	35	ㅁㅁㅁㅁ	55	ロロロロロ	75	ㅁㅁㅁㅁㅁ	95	$\square \square \square \square \square$
ロロロロロ	36	ロロロロロ	56	$\square \square$	76	ㅁㅁㅁㅁ	96	\square
ロロロロロ	37	ㅁㅁㅁㅁㅁ	57	ロロロロロ	77	ロロロロロ	97	ㅁㅁ
18 ロロロロロ	38	ロロロロロ	58	ロロロロロ	78	ロロロロロ	98	口ᄆ
19 ㅁㅁㅁㅁ	39	ㅁㅁㅁ口	59	ㅁㅁㅁ口	79	ㅁ口ロロロ	99	－ロロ
20 ㅁㅁㅁㅁ	40	ㅁ口ロロᄆ	60	ロロロロロ	80	ロロロロロ	100	$\square \square \square \square$
ABCDE		ABCDE		ABCDE		ABCDE		ABCD

