Course paper	EBA 29103 Mathematics for Business Analytics
Deadline	November 14th 2022 at 1200

The problem set consists of two pages. All subquestion have equal weight, and at least 60% score is required to pass. You must give reasons for your answers. Precision and clarity will be emphasized when evaluating your answers. Your answers should be provided as a single file in PDF format.

Question 1.

Compute the integrals:
a) $\int 15 \sqrt{x} \mathrm{~d} x$
b) $\int \frac{2}{x^{2}} \mathrm{~d} x$
c) $\int 2 x\left(1-6 x^{2}\right) \mathrm{d} x$
d) $\int 12(1-x)^{5} d x$

Question 2.

Compute the integrals:
a) $\int \frac{e^{x}}{1-e^{x}} \mathrm{~d} x$
b) $\int \frac{1-x}{1-4 x^{2}} \mathrm{~d} x$
c) $\int \frac{3(\ln x)^{2}}{x} \mathrm{~d} x$
d) $\int 6 x^{2} e^{-x \sqrt{x}} \mathrm{~d} x$

Question 3.

Let E be the ellipse with symmetry lines $x=2$ and $y=1$ going through the points $(5,1)$ and $(2,3)$, and let H be the hyperbola going through the point $(2,3)$ with $x=-1$ and $y=-1$ as asymptotes.
a) Find the equation of the ellipse E and the hyperbola H.
b) Make a figure showing E, H, and the area S bounded by E, H and $x=2$, and compute the area of S. You may use that the area of an ellipse with half-axes $a, b>0$ is given by $\pi a b$.

Question 4.

Let $f(x)$ be the net cash flow after x years (in million NOK per year) from a rental property. We think of this as a continuous cash flow, and use continuous discounting with discount rate $r=10 \%$ to compute net present values. Find the total net present value from the rental property in the first 10 years when
a) $f(x)=100+4 x$
b) $f(x)=100 \cdot 1.04^{x}$

Question 5.

The graph of $f^{\prime \prime}(x)$ is shown in the figure below. Use the figure to estimate the value of the integral $\int_{0}^{3} f^{\prime \prime}(x) \mathrm{d} x$. What can you say about $f^{\prime}(0)$ and $f^{\prime}(3)$?

Question 6.

Use Gaussian elimination to solve the linear systems. Show the elementary row operations, mark the pivot positions in the echelon form, and specify the number of solutions:
a) $\begin{aligned} x+2 y-z & =3 \\ 5 x+8 y-2 z & =23 \\ 2 x+6 y-5 z & =6 \\ 6 x+10 y-3 z & =27\end{aligned}$
b) $\begin{aligned} x+2 y+4 z+w & =11 \\ 2 x+5 y+4 z-3 w & =18 \\ 2 x+3 y+8 z+3 w & =10\end{aligned}$

Question 7.

Compute the determinant $|A|$, and determine when $|A|=0$:
a) $A=\left(\begin{array}{ccc}1 & 1 & -3 \\ 3 & 2 & 1 \\ 1 & a & 7\end{array}\right)$
b) $A=\left(\begin{array}{ccc}s & s & 2 \\ s & -s & 0 \\ 1 & 1 & s\end{array}\right)$
c) $A=\left(\begin{array}{llll}1 & t & 0 & 0 \\ t & 2 & 0 & 0 \\ 0 & 0 & t & 1 \\ 0 & 0 & 8 & t\end{array}\right)$

Question 8.

Let $\mathbf{v}_{1}=(1,3,2,4), \mathbf{v}_{2}=(2,5,6,7)$, og $\mathbf{v}_{3}=(3,6,-2,2)$.
a) Determine whether the vector $\mathbf{w}=(1,1,4,1)$ is a linear combination of the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$.
b) Determine all vectors that are linear combinations of the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$.

Question 9.

The linear system $A \mathbf{x}=\mathbf{b}$ is given by

$$
A=\left(\begin{array}{ccc}
2 & 5 & 3 \\
3 & 7 & a \\
5 & a & 35
\end{array}\right), \quad \mathbf{x}=\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right), \quad \mathbf{b}=\left(\begin{array}{c}
4 \\
-8 \\
-144
\end{array}\right)
$$

where a is a parameter.
a) Find A^{-1} when $a=0$.
b) Determine all values of a such that $A \mathbf{x}=\mathbf{b}$ has a unique solution.
c) Find all solutions of $A \mathbf{x}=\mathbf{b}$ in the cases where there are infinitely many solutions.
d) Find the z-coordinate of the solution (x, y, z) in the cases where $A \mathbf{x}=\mathbf{b}$ has a unique solution.

