EBA 29102
 Mathematics for Business Analytics

Department of Economics

Start date:	11.12 .2019	Time 09:00
Finish date:	11.12 .2019	Time 12:00

Multiple choice 1 in EBA2910 ${ }^{1}$ - Mathematics for Business Analytics

11 December 2019

SolUTIONS

Problem	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Correct answer	B	C	C	A	A	B	D	B	D	D	A	B	D	C	A

Problem 1

The polynomial division

$$
\begin{aligned}
& \left(\begin{array}{c}
\left.2 x^{3} \quad-5 x+3\right):(x-3)=2 x^{2}+6 x+13+\frac{42}{x-3} \\
\frac{-2 x^{3}+6 x^{2}}{6 x^{2}}-5 x \\
\frac{-6 x^{2}+18 x}{13 x}+3 \\
\frac{-13 x+39}{42}
\end{array}\right.
\end{aligned}
$$

gives 42 as remainder (B).

Problem 2

(A) $f^{\prime}(x)=e^{x}$ hence $f^{\prime}(-1)=e^{-1}=0.3679<0.37$.
(B) By the power rule $f^{\prime}(x)=\left(x^{0.5}\right)^{\prime}=0.5 x^{-0.5}=\frac{1}{2 \sqrt{x}}$ hence $f^{\prime}(4)=\frac{1}{2 \sqrt{4}}=0.25$.
(C) By the quotient rule

$$
f^{\prime}(x)=\left(\frac{x-1}{2 x-3}\right)^{\prime}=\frac{1 \cdot(2 x-3)-(x-1) \cdot 2}{(2 x-3)^{2}}=\frac{2 x-3-2 x+2}{(2 x-3)^{2}}=-\frac{1}{(2 x-3)^{2}}
$$

hence $f^{\prime}(1)=-1$ (and not -5).
(D) By the product rule $f^{\prime}(x)=(x \ln (x))^{\prime}=\ln (x)+1$ hence $f^{\prime}(1)=1$.

Hence (C) is wrong.

Problem 3

Becuase $e^{0.1 x}$ is positive for all x we can divide each side of the equation by $e^{0.1 x}$ and get the equivalent equation $x^{2}-9=0$ which gives $x= \pm 3$. (C) is correct.

Problem 4

The function $f(x)$ has per definition stationary points for those x where $f^{\prime}(x)=0$, i.e. where the tangent of the graph of $f(x)$ is horizontal. There are 4 such points on this graph. Hence (A) is wrong.

Problem 5

Because $f(x)$ is continuous on the closed interval, $f(x)$ has a least one global maximum point and one global minimum point. The extremal points of $f(x)$ are either stationary points or end points (there are no cusps). We have $f^{\prime}(x)=-3 x^{2}+12 x-9$. This is a concave second degree function with zeros $x=1, x=3$, a local minimum point and a local maximum point, respectively. (We can also use the second derivative test: $f^{\prime \prime}(1)=6>0, f^{\prime \prime}(3)=-6<0$.) We compute $f(0)=10$, $f(1)=6, f(3)=10$ and $f(4)=6 . f(x)$ has two local minimum points $x=1$ and $x=4$, and so (A).

[^0]
Problem 6

The monthly interest rate is $3.6 \%: 12=0.003$. The period before the first payment equals 48 terms, hence the present value of the first payment is $\frac{12000}{1.003^{48}}$. Payments for 30 years give 360 terms. The present value of the last payment is then $\frac{12000}{1.003^{407}}$. This gives (B).

Problem 7

The present value of the cash flow should be 0 which gives the equation $-30+\frac{50}{e^{4 r}}=0$, i.e. $\frac{50}{e^{4 r}}=30$, i.e. $e^{4 r}=\frac{5}{3}$. Then we put the left hand side and the right hand side into the strictly increasing function $\ln (x)$ and get the equivalent equation $4 r=\ln \left(\frac{5}{3}\right)=\ln (5)-\ln (3)$, i.e. $r=\frac{\ln (5)-\ln (3)}{4}$ which is (D).

Problem 8

$\ln (x-1)$ is only defined for $x>1$. We put the left hand side and the right hand side into the strictly increasing function e^{x}. This gives the equivalent inequality $x-1 \leqslant e^{2}$ with the extra condition $x>1$. The solution is $x \in\left\langle 1,1+e^{2}\right]$ which is (B).

Problem 9

From the graph we see the symmetry axis of the parabola $x=9$ and the maximum value 20. Hence $f(x)=a(x-9)^{2}+20$ for some undetermined number a. We note that $f(14)=15$, i.e.
$a \cdot 5^{2}+20=15$, i.e. $a=-0.2$. Hence $f(x)=-0.2(x-9)^{2}+20$ and $f(0)=-0.2(-9)^{2}+20=3.8$ which gives (D).

Problem 10

We calculate the limits by l'Hôpital's rule.
(A) $\lim _{x \rightarrow \infty} \frac{2 x+1}{3 x-7} \stackrel{\text { l'Hôp }}{=} \frac{2}{3}$.
(B) $\lim _{x \rightarrow \infty} \frac{\ln \left(3 x^{2}+1\right)}{x} \stackrel{\text { l'Hôp }}{=} \lim _{x \rightarrow \infty} \frac{\frac{6 x}{3 x^{2}+1}}{1}=\lim _{x \rightarrow \infty} \frac{6 x}{3 x^{2}+1} \stackrel{\text { l'Hôp }}{=} \lim _{x \rightarrow \infty} \frac{6}{6 x}=0$.
(C) $\lim _{x \rightarrow \infty} \frac{x}{e^{x}+1} \stackrel{\text { l'Hôp }}{=} \lim _{x \rightarrow \infty} \frac{1}{e^{x}}=0$.
(D) $\lim _{x \rightarrow \infty} \frac{(1-3 x)(4 x+1)}{(2 x-7)(1-2 x)}=\lim _{x \rightarrow \infty} \frac{-12 x^{2}+x+1}{-4 x^{2}+16 x-7} \stackrel{\text { l'Hôp }}{=} \lim _{x \rightarrow \infty} \frac{-24 x+1}{-8 x+16} \stackrel{\text { lHôp }}{=} \frac{-24}{-8}=3$ which is the only answer in the interval $[2,5]$.

Problem 11

We calculate $D^{\prime}(p)=-3$ and the elasticity function is hence $\varepsilon(p)=\frac{-3 p}{60-3 p}$. The demand is elastic with respect to price if $\varepsilon(p)<-1$. It gives the equivalent inequality $\frac{60-6 p}{60-3 p}<0$. Since $60-3 p$ is positive for all p in the interval $\langle 0,20\rangle$ the sign of the numerator determines the sign of the quotient. We get $60-6 p<0$ which is true for all p in the interval $\langle 10,20\rangle$. So (A).

Problem 12

In figure 1 we see the tangents $\left(k_{1}-k_{4}\right)$ of the graphs $K_{1}-K_{4}$ containing the origin. The slope of the tangent gives optimal (minimal) average unit cost. We see that k_{2} (the red) has the smallest slope. This gives (B).

Figure 1: Four cost functions ($K_{1}-K_{4}$) with tangents $\left(k_{1}-k_{4}\right)$

Problem 13

We want to find the standard form of the ellipse equation. We collect terms with x or y on the left hand side: $16 x^{2}-96 x+9 y^{2}-72 y=-144$. We want to complete the squares and factors 16 and 9 outside: $16\left[x^{2}-6 x\right]+9\left[y^{2}-8 y\right]=-144$. Now we can complete the squares on the inside of the parantheses: $16\left[(x-3)^{2}-9\right]+9\left[(y-4)^{2}-16\right]=-144$. Then we multiply back into the outer parantheses: $16(x-3)^{2}-144+9(y-4)^{2}-144=-144$, that is $16(x-3)^{2}+9(y-4)^{2}=144$. Finally we divide by 144 to get the standard form:

$$
\frac{(x-3)^{2}}{9}+\frac{(y-4)^{2}}{16}=144
$$

The ellipse hence has centre $(3,4)$ and half axes 3 and 4 . This is only compatible with (D).

Problem 14

(A) $f^{\prime}(x)$ has a minimum point $x \approx 2.65$ and a maximum point $x \approx 4.35$. These are the only points where $f^{\prime \prime}(x)$ changes sign and thus are the only inflection points for $f(x)$.
(B) From the graph we see that the slope of the tangent of $f^{\prime}(x)$ (i.e. $f^{\prime \prime}(x)$) is increasing from $x=3$ to $x \approx 3.5$ and decreasing from $x \approx 3.5$ to $x=4$.
(C) Since $f^{\prime}(x)$ is negative for x in the interval $\langle 2,3\rangle, f(x)$ is strictly decreasing in the interval $[2,3]$ and hence $f(2)>f(3)$ is correct.
(D) $f(x)$ is concave where $f^{\prime \prime}(x)$ is less or equal 0 , but from the graph we see that the slope of the tangent of $f^{\prime}(x)$ is positive from $x=4$ to $x \approx 4.35$.

Problem 15

We denote the equation $e^{y^{2}+x}=8 x^{2}$ by $(*)$. We differentiate both sides of $(*)$ to get an equation which contains y^{\prime}. By applying the chain rule twice we get $\left(2 y y^{\prime}+1\right) e^{y^{2}+x}=16 x$. We want to solve this for y^{\prime}. We substitute $e^{y^{2}+x}=8 x^{2}$ and get $\left(2 y y^{\prime}+1\right) \cdot 8 x^{2}=16 x$. By dividing with $8 x^{2}$ on each side (ok because $x=0$ doesn't give any solutions to $(*)$) we get $2 y y^{\prime}+1=\frac{2}{x}$, i.e. $2 y y^{\prime}=\frac{2-x}{x}$ which gives $y^{\prime}=\frac{2-x}{2 x y}$. We see that $x=2$ implies $y^{\prime}=0$. Here we use that the corresponding y-values are different from 0 . We find the y-values by inserting $x=2$ into ($*$) and solving, i.e. solving $e^{y^{2}+2}=32$. We put the left hand side and the right hand side into $\ln (x)$ abd get the equation $y^{2}+2=\ln (32)$, i.e. $y^{2}=\ln (32)-2$. Because $\ln (32)-2>0$, this equation has exactly two solutions for y (and none of them equals 0). This gives (A).

Figure 2: The implicitly defined curve (green) with tangents (brown) for $x=2$

[^0]: ${ }^{1}$ Exam code EBA29102

