
Suggested solution EBA 1180 Mathematics for Data Science
Date May 27th 2024 from 0900 - 1400

Problem 1.

(a) We use cofactor expansion along the first row to compute the determinant:∣∣∣∣∣∣
1 1 2
1 a 0
a 1 a

∣∣∣∣∣∣ = 1(a2 − 0)− 1(a− 0) + 2(1− a2) == −a2 − a+ 2

By factorizing (e.g., via the abc-formula), we find that the determinant can be written as
|A| = −(a− 1)(a+ 2).

(b) When a = 2, we have det(A) = −22 − 2 + 2 = −4 ̸= 0. Hence, A has an inverse matrix given
by

A−1 =
1

|A|

C11 C12 C13

C21 C22 C23

C31 C32 C33

T

where Cij is the cofactor of A in position (i,j). With a = 2, the inverse matrix is given by

A =

1 1 2
1 2 0
2 1 2

 ⇒ A−1 =
1

−4

 4 −2 −3
0 −2 1
−4 2 1

T

=
1

4

−4 0 4
2 2 −2
3 −1 −1


(c) Note that,

A−1x = b

AA−1x = Ab

Ix = Ab

x = Ab

Hence, we can solve the equation by calculating Ab:

x = Ab =

1 1 2
1 2 0
2 1 2

1
2
3

 =

1 + 2 + 6
1 + 4 + 0
2 + 2 + 6

 =

 9
5
10


Problem 2.

(a) We formulate the extended matrix of the system, and use elementary row operations:1 2 2 −1 0
1 1 −1 0 −2
3 4 8 −9 12

 →

1 2 2 −1 0
0 −1 −3 1 −2
0 −2 2 −6 12

 →

1 2 2 −1 0
0 −1 −3 1 −2
0 0 8 −8 16


The result is an echelon form, and we have marked the pivot positions in blue. Hence, there
are infinitely many solutions, with w free, where we write x = (x,y,z,w) for the unknowns.
We find the solutions by back substitution: From the final equation, we get 8z − 8w = 16,
or z = 2 + w. The next equation says −y − 3z + w = −2, or y = 2 − 3z + w = 2 − 3(2 +
w) + w = 2 − 6 − 3w + w = −4 − 2w. The first equation gives x + 2y + 2z − w = 0, or
x = w − 2y − 2z = w − 2(−4− 2w)− 2(2 + w) = w + 8 + 4w − 4− 2w = 4 + 3w. Hence, the
solutions of the linear system can be written

x =


4 + 3w
−4− 2w
2 + w
w

 = w


3
−2
1
1

+


4
−4
2
0


where w is a free variable.
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(b) From (a), we find that

(4 + 3w)v1 + (−4− 2w)v2 + (2 + w)v3 + wv4 = b

for all numbers w. If we let −4− 2w = 0, i.e., w = −2, we get

(4 + 3 · (−2))v1 + 0 · v2 + (2 + (−2))v3 + (−2)v4 = b.

Hence,

−2v1 − 2v4 = b

is a way to write b as a linear combination of v1,v3 and v4. Alternatively, we can solve
the vector equation x1v1 + x3v3 + x4v4 by writing it as a linear system and using Gaussian
elimination.

Problem 3.

(a) We use integration by parts, where we integrate e−x and differentiate x. Hence, we get∫
xe−x dx = −e−xx−

∫
(−e−x) · 1 dx = −xe−x +

∫
e−x dx = −xe−x − e−x + C

(b) We factorize the denominatior of the integrand, for example via the abc-formula, and get

x2 + x− 6 = (x− 2)(x+ 3).

Then, we use partial fractions to simplify the integrand. From the factorization of the denom-
inator, we can write the integrand in the following way:

3x+ 4

x2 + x− 6
=

3x+ 4

(x− 2)(x+ 3)

We would like to find numbers A and B such that
3x+ 4

(x− 2)(x+ 3)
=

A

x− 2
+

B

x+ 3
⇒ 3x+ 4 = A(x+ 3) +B(x− 2) = (A+B)x+ (3A− 2B)

This gives A+B = 3 and 3A− 2B = 4 by comparing the coefficients in front of each term on
the left and the right hand side. We get A = 3−B and hence 3(3−B)−2B = 4 or −5B = −5,
i.e., B = 1. This gives A = 3− 1 = 2. Then,∫

3x+ 4

x2 + x− 6
dx =

∫ ( 2

x− 2
+

1

x+ 3

)
dx = 2 ln |x− 2|+ ln |x+ 3|+ C

(c) We use the substitution u =
√
x + 1, with du = 1

2
√
x
dx. Note that from the substitution,

√
x = u− 1. Hence, we can write dx = 2(u− 1) du. We compute the new integration bounds

after the substitution: x = 0 which gives u =
√
0+1 = 1 and x = 1 which gives u =

√
1+1 = 2.

From this, we get:∫ 1

0

1√
x+ 1

dx =

∫ 2

1

1

u
2(u− 1) du =

∫ 2

1

(
2− 2

u

)
du =

[
2u− 2 ln |u|

]2
u=1

By inserting the new integration bounds, we find∫ 1

0

1√
x+ 1

dx = (4− 2 ln 2)− (2− 2 ln 1) = 4− 2 ln 2− 2 + 0 = 2− 2 ln 2

(d) The total net present value for the rental income during the first 5 years is given by:

∫ 5

0
I(x)e−rx dx =

∫ 5

0
200 · 1,04xe−0,06x dx = 200

∫ 5

0
(eln 1,04)xe−0,06x dx = 200

∫ 5

0
e(ln 1,04−0,06)x dx

By anti-differentiation, we find∫ 5

0
I(x)e−rx dx =

200

ln 1,04− 0,06

[
e(ln 1,04−0,06)x

]5
x=0

=
200

ln 1,04− 0,06

(
e5(ln 1,04−0,06) − 1

)
≈ 950
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Problem 4.

(a) The partial derivatives of f(x,y) = 9(x− 3)2 + 4y2 is f ′
x = 18(x− 3) and f ′

y = 8y. Hence, the
first order conditions f ′

x = 0, f ′
y = 0 are given by

f ′
x = 18(x− 3) = 0 ⇒ x = 3,

f ′
y = 8y = 0 ⇒ y = 0.

Hence, we only have one stationary point for f :

(x,y) = (3,0).

The Hessian of f in a general point is given by

H(f) =

(
f ′′
xx f ′′

xy

f ′′
xy f ′′

yy

)
=

(
18 0
0 8

)
.

The stationary point is (x,y) = (3,0). In this case, the Hessian is independent of the point, so

H(f)(3,0) =

(
18 0
0 8

)
.

We see that det(H(f)(3,0)) = 18 · 8− 0 · 0 > 0 and trH(f)(3,0) = 18 + 8 > 0. Hence, (3,0) is
a local minimum for f .

(b) f(x,y) = 9(x− 3)2 + 4y2 = 1 can be rewritten as

(x− 3)2

(13)
2

+
y2

(12)
2
= 1.

We recognize this as the standard equation of an ellipse with center in the point (3,0) with
horizontal half axis 1

3 and vertical half axis 1
2 .

We can rewrite in a similar way for c = 4 and c = 9. For c = 4, we get:

9(x− 3)2 + 4y2 = 4

(x− 3)2

(13)
2

+
y2

(12)
2
= 4

By dividing by 4 on both sides of the equation, we get (x−3)2

( 2
3
)2

+ y2

( 2
2
)2

= 1. Hence,

(x− 3)2

(23)
2

+
y2

12
= 1.

We recognize this as the standard equation of an ellipse with center in (3,0), horizontal half
axis 2

3 and vertical half axis 1. This is a larger ellipse than the one corresponding to level

c = 1. Similar calculations for c = 9 gives 9(x − 3)2 + 4y2 = 9, which can be rewritten as
(x−3)2

( 3
3
)2

+ y2

( 3
2
)2

= 1. Hence,

(x− 3)2

12
+

y2

(32)
2
= 1.

This is the standard equation of an ellipse with center in (3,0), horizontal half axis 1 and
vertical half axis 3

2 . Again, this is a larger ellipse than the one corresponding to level c = 4.

For c = 0, we get 9(x − 3)2 + 4y2 = 0. Since 9(x − 3)2 ≥ 0 and 4y2 ≥ 0 for all (x,y), this
implies that x− 3 = 0, i.e., x = 3 and y = 0. Hence, the level curve for c = 0 is just the point
(3,0). This is the center of the ellipses derived above. In Figure 1, the level curves are graphed
in the same coordinate system.

From the level curves, we see that each level of the function f corresponds to an ellipse in
the xy-plane. The larger the ellise, the larger the function value. Since the function is defined
for all (x,y), this means that there is no maximum: We can always make larger and larger
level curve ellipses which correspond to larger and larger function values. However, we see
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Figure 1. Level curves for f .

Figure 2. Level curves for f with the constraint.

that f has a minimum point in (x,y) = (3,0). From (b), we know that this corresponds to
level c = 0 = f(3,0). Note that this minimum point is the same as the one we found in (a).

(c) The constraint x+ y = 4 can be written as y = 4− x. In Figure 2, the graph of this function
is drawn in the same coordinate system as the level curves.

The constraint means the we can only choose among points on the graph of y = 4−x. From
the figure, we see that the optimization problem with the constraint still has no maximum:
We can get to an arbitrarily large level curve ellipse by following the straight line. However,
the optimization problem with constraint has a minimum. We can find this by drawing a level
curve ellipse which is tangent to the straight line. The point where the tangent meets the level
curve will be the minimum point. From the figure, we see that this point is between the level
curve corresponding to level c = 1 and level c = 4, so fmin is between 1 and 4. Note that the
minimum value for the constrained optimization problem will be greater than the one found
in the corresponding unbounded problem.

Problem 5.
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(a) We use the Lagrange multiplier method with L = x2y2 + 2x2 + y2 − λ(x2 + y2 − 33) in order
to find candidate points. The Lagrange conditions are

L′
x = 2xy2 + 4x− 2λx = 0

L′
y = 2x2y + 2y − 2λy = 0

x2 + y2 = 33

We have three cases:
• If x,y ̸= 0, we can divide wrt. 2x and 2y respectively, and hence solve the two first
equations for λ. In this case, we get:

λ = y2 + 2 = x2 + 1

Hence, x2 = y2 + 1. We insert this into the constraint, and get x2 + y2 = y2 + 1 + y2 =
2y2 + 1 = 33, so y2 = 16 =⇒ y = ±4. This means that x2 = y2 + 1 = 16 + 1 = 17, so
x = ±

√
17. We compute the corresponding λ from f.ex. λ = y2 + 2 = 16 + 2 = 18. This

gives four candidate points:

(
√
17,4; 18),(

√
17,− 4; 18),(−

√
17,4; 18),(−

√
17,− 4; 18).

The corresponding function values are

f(
√
17, 4) = f(

√
17,−4) = f(−

√
17, 4) = f(−

√
17,−4) = 16 · 17 + 2 · 17 + 16 = 322

.
• If x = 0, the first equation automatically holds. From the second equation, we get
2y − 2λy = 0, i.e., y(1 − λ) = 0. In order for this to hold, we need y = 0 or λ = 1 (or
both). If y = 0, the constraint cannot hold, since this gives x2 + y2 = 02 + 02 ̸= 33.
However, λ = 1 is possible. In this case, we find y by solving 02 + y2 = 33, which gives
y = ±

√
33. The candidate point is (x,y;λ) = (0, ±

√
33; 1). The corresponding function

value is f(0,±
√
33) = 33.

• If y = 0, a similar argument as above implies that the only possibility is λ = 2 with corre-
sponding x = ±

√
33. The candidate point is (x,y;λ) = (±

√
33,0; 2). The corresponding

function value is f(±
√
33,0) = 66.

(b) The Extreme Value Theorem says that any continuous function defined on a closed and
bounded set has a (global) maximum and a (global) minimum.

The Extreme Value Theorem can be applied to the Lagrange problem, because f(x,y) is
a continuous function, and the set of admissible points is closed and bounded: It is closed
because it is defined by an equality (i.e., contains its boundary). The set is bounded because
x2 + y2 = 33 is a circle with center in the origin and radius

√
33.

(c) A point has degenerated constraint if g′x = g′y = 0, where g(x,y) = x2 + y2. This gives

g′x = 2x = 0, g′y = 2y = 0 ⇒ x = y = 0

But the point (x,y) = (0,0) is not admissible, since it does not satisfy the constraint; g(0,0) =
0 ̸= 33. We conclude that there are no feasible points with degenerated constraint for this
problem.

From the Extreme Value Theorem it follows that the Lagrange problem has a maximum
and a minimum. These have to be among the candidate points we have found, since there
are no admissible points with degenerated constraint. By finding the largest and the smallest
function value among the candidate points from (a), it follows that the maximum value is
fmax = 322 in the points

(x,y) = (
√
17, 4), (

√
17,−4), (−

√
17, 4), (−

√
17,−4)

med λ = 18. Tilsvarende er minimumsverdien fmin = 33 i punktene (x,y) = (0, ±
√
33) med

λ = 1.
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