School exam (3h) EBA11805-Mathematics for Data Science

16 May 2024
The exam set has 3 pages. All 12 problems have equal weight. You are required to give reasons for all answers. Grades: A - F which counts for 40% of the final grade in the course.
Support materials permitted: BI-approved exam calculator. Ruler.

Problem 1

Determine the standard equation for the ellipse in figure 1.

Figure 1: Ellipse

Problem 2

Determine the function expression $f(x)$ for the hyperbola in figure 2 .

Figure 2: Hyperbola

Problem 3

Find an expression for the second degree polynomial function $f(x)$ if the graph has top-point $P=(6,10)$ and passes through the point $Q=(4,8)$.

Problem 4

The graphs of the functions $f(x)$ and $g(x)$ are given in figure 3.
i) Use the figure to solve the inequality $f(x) \leqslant g(x)$.
ii) Use the figure to solve the inequality $f(x) \cdot g(x) \geqslant 0$.

Figure 3: The graphs of $f(x)$ and $g(x)$

Problem 5

The graph of the function $f(x)$ is given in figure 3.
i) Use the figure to find an approximation to $f^{\prime}(4)$.
ii) Use the figure to make the sign-line for $f^{\prime \prime}(x)$.

Problem 6

We have the function $f(x)=30 e^{x(10-x)}$.
i) Calculate the expression for the derivative function $f^{\prime}(x)$ and determine the stationary points for $f(x)$.
ii) Determine the maximal value and minimal value for $f(x)$ when the domain of definition for $f(x)$ is $D_{f}=[3,8]$.

Problem 7

Kåre is thinking about saving money, with 15000 each month, with the first deposit 4 years from now. Assume nominal interest is 6% with monthly compounding. Assume last deposit is 12 years from now.
i) Write up a geometric series for how much Kåre has in his account 12 years from now.
ii) Calculate how much Kåre has in his account 12 years from now.

Problem 8

	Year	0	1	3	5
	Here is a cash flow:	-20	-20	25	40

i) Write up the equation for the internal rate of return (IRR). (Note: you are not supposed to solve the equation!)
ii) Determine whether the internal rate of return is larger or smaller than 14% (Note: calculation by the finance buttons on the calculator is not a valid argument!).

Problem 9

We have the function $f(x)=4+5 e^{-0,1 x}$ with domain of definition $D_{f}=[0, \rightarrow\rangle$.
i) Determine the asymptotes of $f(x)$.
ii) Determine the inverse function $g(x)$, determine the domain of definition D_{g}, and determine the range R_{g}.

Problem 10

i) Solve the equation $\ln \left(x^{4}-x^{2}-5\right)=0$.
ii) Use one parameter to write an expression for all polynomials on the form $x^{2}+b x+c$ which have two zeros of distance 6 from each other.

Problem 11

i) Determine the Taylor polynomial $P_{3}(x)$ of degree 3 of the function $f(x)=\ln (x+1)$ about $x=0$.
ii) Use $P_{3}(x)$ to give an approximate value for $\ln (1.2)$.

Problem 12

An amount K_{0} is deposited in an account today and increases to K_{10} in 10 years.
i) Find an expression for the effective annual interest $r_{\text {eff }}$.
ii) Assume there is continuous compounding. Find an expression for the nominal annual interest r.

