School exam (3h) EBA11805 - Mathematics for Data Science

16 May 2024

The exam set has 3 pages. All 12 problems have equal weight. You are required to give reasons for all answers. Grades: A - F which counts for 40% of the final grade in the course. Support materials permitted: BI-approved exam calculator. Ruler.

Problem 1

Determine the standard equation for the ellipse in figure 1.

Figure 1: Ellipse

Problem 2

Determine the function expression f(x) for the hyperbola in figure 2.

Figure 2: Hyperbola

Problem 3

Find an expression for the second degree polynomial function f(x) if the graph has top-point P = (6, 10) and passes through the point Q = (4, 8).

Problem 4

The graphs of the functions f(x) and g(x) are given in figure 3.

- i) Use the figure to solve the inequality $f(x) \leq g(x)$.
- ii) Use the figure to solve the inequality $f(x) \cdot g(x) \ge 0$.

Figure 3: The graphs of f(x) and g(x)

Problem 5

The graph of the function f(x) is given in figure 3.

- i) Use the figure to find an approximation to f'(4).
- ii) Use the figure to make the sign-line for f''(x).

Problem 6

We have the function $f(x) = 30e^{x(10-x)}$.

- i) Calculate the expression for the derivative function f'(x) and determine the stationary points for f(x).
- ii) Determine the maximal value and minimal value for f(x) when the domain of definition for f(x) is $D_f = [3, 8]$.

Problem 7

Kåre is thinking about saving money, with 15000 each month, with the first deposit 4 years from now. Assume nominal interest is 6% with monthly compounding. Assume last deposit is 12 years from now.

- i) Write up a geometric series for how much Kåre has in his account 12 years from now.
- ii) Calculate how much Kåre has in his account 12 years from now.

Problem 8

Here is a cash flow:	Year	0	1	3	5
	Payment	-20	-20	25	40

- i) Write up the equation for the internal rate of return (IRR). (Note: you are not supposed to solve the equation!)
- ii) Determine whether the internal rate of return is larger or smaller than 14% (Note: calculation by the finance buttons on the calculator is not a valid argument!).

Problem 9

We have the function $f(x) = 4 + 5e^{-0.1x}$ with domain of definition $D_f = [0, \rightarrow)$.

- i) Determine the asymptotes of f(x).
- ii) Determine the inverse function g(x), determine the domain of definition D_g , and determine the range R_g .

Problem 10

- i) Solve the equation $\ln(x^4 x^2 5) = 0$.
- ii) Use one parameter to write an expression for all polynomials on the form $x^2 + bx + c$ which have two zeros of distance 6 from each other.

Problem 11

- i) Determine the Taylor polynomial $P_3(x)$ of degree 3 of the function $f(x) = \ln(x+1)$ about x = 0.
- ii) Use $P_3(x)$ to give an approximate value for $\ln(1.2)$.

Problem 12

An amount K_0 is deposited in an account today and increases to K_{10} in 10 years.

- i) Find an expression for the effective annual interest $r_{\rm eff}$.
- ii) Assume there is continuous compounding. Find an expression for the nominal annual interest *r*.