School exam (3h) EBA11805 - Mathematics for Data Science

12 Des. 2023

The exam set has 2 pages. All 12 problems have equal weight. You are required to give reasons for all answers. Grades: A - F which counts for 40% of the final grade in the course. Support materials permitted: BI-approved exam calculator. Ruler.

Problem 1

Calculate the sum

 $7\,000 \cdot 1.004^{91} + 7\,000 \cdot 1.004^{90} + 7\,000 \cdot 1.004^{89} + ... + 7\,000 \cdot 1.004^{21} + 7\,000 \cdot 1.004^{20}$

Problem 2

Calculate the expression for the derivative function f'(x) if

i)
$$f(x) = 12xe^x$$
 ii) $f(x) = \frac{36 - 4x}{x - 7}$ iii) $f(x) = \ln(x^{50})$

Problem 3

We have the function $f(x) = \frac{36-4x}{x-7}$.

- i) Determine the asymptotes for f(x).
- ii) Draw a sketch of the graph of f(x) with asymptotes.

Problem 4

- i) Solve the inequality $\ln(x+5) \ge 3$.
- ii) Determine which of the numbers 1.24^{100000} and $1.02^{1200000}$ is the larger.

Problem 5

Here is a cash flow:	Year	0	5	6
	Payment	-20	10	25

- i) Write up the equation for the internal rate of return. (Note: you are not supposed to solve the equation!)
- ii) Determine whether the internal rate of return is larger or smaller than 10% (Note: calculation by the finance buttons on the calculator is not a valid argument!).

Problem 6

Draw a sketch of the graphs of the functions f(x) and g(x) with the given data. (Note: you are not supposed find any function expressions!)

- i) f(3) = 10, f(9) = 15, f(15) = 20, f'(6) = -1, f'(12) = 1.
- ii) g'(x) < 0 for all x between 20 and 100, g''(x) > 0 for all x between 20 and 60, g''(x) < 0 for all x between 60 and 100.

Problem 7

In figure 1 you see the graph of the derivative function f'(x).

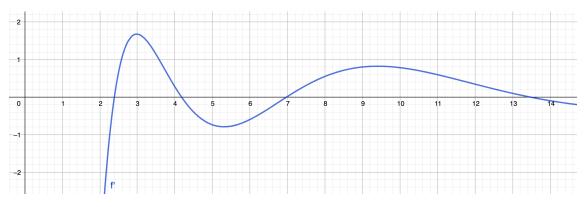


Figure 1: Graph of f'(x)

Determine whether the statement is true or false. Give a short explanation.

i) f(9) > f(11).

- ii) f(x) has three stationary points in the interval [2, 8].
- iii) f(x) has three inflection points in the interval [2, 11].

Problem 8

We have the cost function $C(x) = 3x + 100e^{rx}$ with $x \ge 0$ where *r* is an undetermined positive number (a parameter).

- i) Determine the marginal cost function.
- ii) Determine the cost optimum and the minimal average unit cost.

Problem 9

Let *p* be the price of a commodity and suppose $D(p) = 7(p-60)^2$ with $0 is the demand function. Suppose <math>\varepsilon(p)$ is the momentary price elasticity of the demand function.

- i) Calculate $\varepsilon(p)$.
- ii) Determine whether the revenue is increasing or decreasing if the price increases a little from p = 24.

Problem 10

- i) Find the Taylor polynomial $P_2(x)$ of degree 2 about x = 9 for the function $f(x) = \sqrt{x}$.
- ii) Use $P_2(x)$ to determine an approximate value for $\sqrt{10}$.

Problem 11

We have a curve *C* given by the equation

$$x^3 - 4xy + y^2 = 0$$

- i) Use implicit differentiation to express y' in terms of y and x.
- ii) Determine all solutions for y given that x = 3 and determine the slopes of the tangents to C in those points.

Problem 12

We have the function $f(x) = \frac{100 \ln(x)}{5 \ln(x) + 10}$ with domain of definition $D_f = \langle e^{-2}, \rightarrow \rangle$.

- i) Determine the asymptotes of f(x).
- ii) Determine the inverse function g(x) with domain of definition D_g and range R_g .