School exam (3h) EBA11805 - Mathematics for Data Science

12 Des. 2023
The exam set has 2 pages. All 12 problems have equal weight. You are required to give reasons for all answers. Grades: A - F which counts for 40% of the final grade in the course.
Support materials permitted: BI-approved exam calculator. Ruler.

Problem 1

Calculate the sum

$$
7000 \cdot 1.004^{91}+7000 \cdot 1.004^{90}+7000 \cdot 1.004^{89}+\ldots+7000 \cdot 1.004^{21}+7000 \cdot 1.004^{20}
$$

Problem 2

Calculate the expression for the derivative function $f^{\prime}(x)$ if
i) $f(x)=12 x e^{x}$
ii) $f(x)=\frac{36-4 x}{x-7}$
iii) $f(x)=\ln \left(x^{50}\right)$

Problem 3

We have the function $f(x)=\frac{36-4 x}{x-7}$.
i) Determine the asymptotes for $f(x)$.
ii) Draw a sketch of the graph of $f(x)$ with asymptotes.

Problem 4

i) Solve the inequality $\ln (x+5) \geqslant 3$.
ii) Determine which of the numbers 1.24^{100000} and $1.02^{1200000}$ is the larger.

Problem 5

Here is a cash flow: \quad| Year | 0 | 5 | 6 |
| ---: | ---: | ---: | ---: |
| Payment | -20 | 10 | 25 |

i) Write up the equation for the internal rate of return. (Note: you are not supposed to solve the equation!)
ii) Determine whether the internal rate of return is larger or smaller than 10% (Note: calculation by the finance buttons on the calculator is not a valid argument!).

Problem 6

Draw a sketch of the graphs of the functions $f(x)$ and $g(x)$ with the given data. (Note: you are not supposed find any function expressions!)
i) $f(3)=10, f(9)=15, f(15)=20, f^{\prime}(6)=-1, f^{\prime}(12)=1$.
ii) $g^{\prime}(x)<0$ for all x between 20 and 100, $g^{\prime \prime}(x)>0$ for all x between 20 and $60, g^{\prime \prime}(x)<0$ for all x between 60 and 100 .

Problem 7

In figure 1 you see the graph of the derivative function $f^{\prime}(x)$.

Figure 1: Graph of $f^{\prime}(x)$
Determine whether the statement is true or false. Give a short explanation.
i) $f(9)>f(11)$.
ii) $f(x)$ has three stationary points in the interval $[2,8]$.
iii) $f(x)$ has three inflection points in the interval $[2,11]$.

Problem 8

We have the cost function $C(x)=3 x+100 e^{r x}$ with $x \geqslant 0$ where r is an undetermined positive number (a parameter).
i) Determine the marginal cost function.
ii) Determine the cost optimum and the minimal average unit cost.

Problem 9

Let p be the price of a commodity and suppose $D(p)=7(p-60)^{2}$ with $0<p<60$ is the demand function. Suppose $\varepsilon(p)$ is the momentary price elasticity of the demand function.
i) Calculate $\varepsilon(p)$.
ii) Determine whether the revenue is increasing or decreasing if the price increases a little from $p=24$.

Problem 10

i) Find the Taylor polynomial $P_{2}(x)$ of degree 2 about $x=9$ for the function $f(x)=\sqrt{x}$.
ii) Use $P_{2}(x)$ to determine an approximate value for $\sqrt{10}$.

Problem 11

We have a curve C given by the equation

$$
x^{3}-4 x y+y^{2}=0
$$

i) Use implicit differentiation to express y^{\prime} in terms of y and x.
ii) Determine all solutions for y given that $x=3$ and determine the slopes of the tangents to C in those points.

Problem 12

We have the function $f(x)=\frac{100 \ln (x)}{5 \ln (x)+10}$ with domain of definition $D_{f}=\left\langle e^{-2}, \rightarrow\right\rangle$.
i) Determine the asymptotes of $f(x)$.
ii) Determine the inverse function $g(x)$ with domain of definition D_{g} and range R_{g}.

