Exam	EBA 1180 Mathematics for Data Science
Date	December 18th 2023 at $0900-1400$

The exam consists of 15 problems with equal weight. All answers must be justified.

Question 1.

Consider the matrix A and the vectors \mathbf{b} and \mathbf{w} given by

$$
A=\left(\begin{array}{cccc}
1 & 2 & 1 & 3 \\
2 & 4 & 5 & 7 \\
1 & 2 & 4 & 4
\end{array}\right), \quad \mathbf{b}=\left(\begin{array}{c}
4 \\
14 \\
10
\end{array}\right), \quad \mathbf{w}=\left(\begin{array}{c}
a \\
b \\
c
\end{array}\right)
$$

Denote the column vectors of A by $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}$.
(a) Solve the linear system $A \mathbf{x}=\mathbf{b}$.
(b) Determine all (a, b, c) such that \mathbf{w} is a linear combination of the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}$.

Question 2.

Compute the following integrals:
a) $\int_{1}^{2} 4 x \ln x \mathrm{~d} x$
b) $\int_{0}^{1} \frac{3 x}{\sqrt{x+1}} \mathrm{~d} x$
c) $\int_{0}^{1} \frac{x}{x^{2}-5 x+6} \mathrm{~d} x$
d) $\int e^{\sqrt{x}} \mathrm{~d} x$

Let R be the part of the plane in the first quadrant that is bounded by the graph of $f(x)=x^{3}-x$, the straight line L through the origin with slope 3 , and the x-axis.
e) Make a figure where R is shown. Compute the area of R.

Question 3.

Let the matrix A and the vector \mathbf{b} be given by

$$
A=\left(\begin{array}{ccc}
t & 1 & t \\
1 & t & 2 \\
t & 2 & t
\end{array}\right), \quad \mathbf{b}=\left(\begin{array}{c}
t \\
t^{2} \\
t^{3}
\end{array}\right)
$$

(a) Compute $|A|$.
(b) Find A^{-1} when $t=1$.
(c) Determine all values of t such that $A \mathbf{x}=\mathbf{b}$ has at least one solution.

Question 4.

Consider the function f given by $f(x, y)=\frac{x y}{x+y+1}$.
(a) Find the stationary points of the function f.
(b) Classify the stationary points of f. Does f have maximal or minimal values?

Question 5.

Consider the Lagrange problem max $f(x, y)=x-y$ when $x^{2}+x y+y^{2}=3$.
(a) Write down the three Lagrange conditions, and find all points $(x, y ; \lambda)$ that satisfy them.
(b) Are there any admissible points with degenerate constraint in this problem?
(c) Determine whether the Lagrange problem has a maximal value. If so, find this value.

Formula Sheet

Financial mathematics

Linear algebra

Geometric series.

A finite geometric series has sum

$$
S_{n}=a_{1} \cdot \frac{1-k^{n}}{1-k}=a_{1} \cdot \frac{k^{n}-1}{k-1}
$$

and an infinite geometric series has sum

$$
S=a_{1} \cdot \frac{1}{1-k} \quad \text { when }|k|<1
$$

Present values.

The present value K_{0} of a payment K is given by

$$
K_{0}=\frac{K_{n}}{(1+r)^{n}} \quad \text { and } \quad K_{0}=\frac{K_{n}}{e^{r n}}
$$

using discrete and continuous compounding.

Integration

Integration techniques.

a) Integration by parts:

$$
\int u^{\prime} v \mathrm{~d} x=u v-\int u v^{\prime} \mathrm{d} x
$$

b) Substitution:

$$
\int f(u) u^{\prime} \mathrm{d} x=\int f(u) \mathrm{d} u
$$

c) Partial fractions:

$$
\begin{aligned}
& \int \frac{p x+q}{(x-a)(x-b)} \mathrm{d} x \\
& \quad=\int\left(\frac{A}{x-a}+\frac{B}{x-b}\right) \mathrm{d} x
\end{aligned}
$$

Area.

The area of the region bounded by $a \leq x \leq b$ and $f(x) \leq y \leq g(x)$ is given by

$$
A=\int_{a}^{b}(g(x)-f(x)) \mathrm{d} x
$$

Cramer's rule.

A linear system $A \mathbf{x}=\mathbf{b}$ where $|A| \neq 0$ has a unique solution given by

$$
x_{1}=\frac{\left|A_{1}(\mathbf{b})\right|}{|A|} \quad x_{2}=\frac{\left|A_{2}(\mathbf{b})\right|}{|A|} \ldots x_{n}=\frac{\left|A_{n}(\mathbf{b})\right|}{|A|}
$$

where $A_{i}(\mathbf{b})$ is the matrix obtained by replacing column i of A by \mathbf{b}.

Functions of two variables

Second derivative test.

A stationary point $\left(x^{*}, y^{*}\right)$ of the function $f(x, y)$ is a
a) local minimum if $A>0$ and $A C-B^{2}>0$
b) local maximum if $A<0$ and $A C-B^{2}>0$
c) saddle point if $A C-B^{2}<0$
when $H(f)\left(x^{*}, y^{*}\right)=\left(\begin{array}{ll}A & B \\ B & C\end{array}\right)$.

Level curves.

The slope $y^{\prime}=\mathrm{d} y / \mathrm{d} x$ of the tangent line to the level curve $f(x, y)=c$ is given by

$$
y^{\prime}=-\frac{f_{x}^{\prime}}{f_{y}^{\prime}}
$$

Method of Lagrange multipliers.

The Lagrange conditions for the problem

$$
\max / \min f(x, y) \text { when } g(x, y)=a
$$

is given by

$$
\mathcal{L}_{x}^{\prime}=0, \mathcal{L}_{y}^{\prime}=0, g(x, y)=a
$$

An admissible point has degenerated constraint if

$$
g_{x}^{\prime}=0, g_{y}^{\prime}=0
$$

