Question 1.

(a) We write down the extended matrix of the system, and use elementary row operations:

$$
\left(\begin{array}{cccc|c}
1 & 2 & 1 & 3 & 4 \\
2 & 4 & 5 & 7 & 14 \\
1 & 2 & 4 & 4 & 10
\end{array}\right) \rightarrow\left(\begin{array}{cccc|c}
1 & 2 & 1 & 3 & 4 \\
0 & 0 & 3 & 1 & 6 \\
0 & 0 & 3 & 1 & 6
\end{array}\right) \rightarrow\left(\begin{array}{llll|l}
1 & 2 & 1 & 3 & 4 \\
0 & 0 & 3 & 1 & 6 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

The result is an echelon form, and we have marked the pivot positions in blue. Hence, there are infinitely many solutions, with y and w free when we write $\mathbf{x}=(x, y, z, w)$ for the unknown. We find the solution by back substitution, where we ignore the row of zeros at the bottom, as this gives a trivial equation: From the second equation, we find $3 z+w=6$, or $z=(6-w) / 3=2-$ $w / 3$. The first equation gives $x+2 y+z+3 w=4$, or $x=4-2 y-(2-w / 3)-3 w=2-2 y-8 w / 3$. Hence, the solution of the linear system can be written

$$
\mathbf{x}=\left(\begin{array}{c}
2-2 y-8 w / 3 \\
y \\
2-w / 3 \\
w
\end{array}\right)=\left(\begin{array}{l}
2 \\
0 \\
2 \\
0
\end{array}\right)+y\left(\begin{array}{c}
-2 \\
1 \\
0 \\
0
\end{array}\right)+\frac{w}{3}\left(\begin{array}{c}
-8 \\
0 \\
-1 \\
3
\end{array}\right)
$$

where y, w are free variables.
(b) We know that \mathbf{w} is a linear combination of the column vectors of A if and only if the linear system $A \mathbf{x}=\mathbf{w}$ has solutions. We repeat the row operations above with \mathbf{b} replaced by \mathbf{w} :

$$
\left(\begin{array}{cccc|c}
1 & 2 & 1 & 3 & a \\
2 & 4 & 5 & 7 & b \\
1 & 2 & 4 & 4 & c
\end{array}\right) \rightarrow\left(\begin{array}{cccc|c}
1 & 2 & 1 & 3 & a \\
0 & 0 & 3 & 1 & b-2 a \\
0 & 0 & 3 & 1 & c-a
\end{array}\right) \rightarrow\left(\begin{array}{cccc|c}
1 & 2 & 1 & 3 & a \\
0 & 0 & 3 & 1 & b-2 a \\
0 & 0 & 0 & 0 & (c-a)-(b-2 a)
\end{array}\right)
$$

Since $(c-a)-(b-2 a)=a-b+c$, we find that the linear system has infinitely many solutions (two degrees of freedom) if $a-b+c=0$, and no solutions otherwise (since in this case, we have a pivot in the final column). Hence, \mathbf{w} is a linear combination of the column vectors in A for the values of (a, b, c) where $a-b+c=0$.

Question 2.

(a) We use integration by parts with $u^{\prime}=4 x$ and $v=\ln x$. Hence, we get that $u=2 x^{2}$ and $v^{\prime}=1 / x$. Based on this, we can calculate the indefinite integral

$$
\int 4 x \ln x \mathrm{~d} x=2 x^{2} \ln x-\int 2 x^{2} \cdot \frac{1}{x} \mathrm{~d} x=2 x^{2} \ln x-\int 2 x \mathrm{~d} x=2 x^{2} \ln x-x^{2}+C
$$

Hence, the definite integral is

$$
\int_{1}^{2} 4 x \ln x \mathrm{~d} x=\left[2 x^{2} \ln x-x^{2}\right]_{1}^{2}=8 \ln 2-4-(-1)=8 \ln 2-3
$$

(b) We use the substitution $u=x+1$, with $\mathrm{d} u=\mathrm{d} x$ and $x=u-1$, and the power rule for integration to get that

$$
\int_{0}^{1} \frac{3 x}{\sqrt{x+1}} \mathrm{~d} x=\int_{1}^{2} \frac{3(u-1)}{\sqrt{u}} \mathrm{~d} u=3 \int_{1}^{2} u^{1 / 2}-u^{-1 / 2} \mathrm{~d} u=3\left[\frac{2}{3} u^{3 / 2}-2 u^{1 / 2}\right]_{1}^{2}
$$

since the new bounds of the definite integral are given from that $x=0$ implies $u=1$ and $x=1$ implies $u=2$. Hence,

$$
\int_{0}^{1} \frac{3 x}{\sqrt{x+1}} \mathrm{~d} x=\left[2 u^{3 / 2}-6 u^{1 / 2}\right]_{1}^{2}=4 \sqrt{2}-6 \sqrt{2}-2-(-6)=4-2 \sqrt{2}
$$

(c) The factorization $x^{2}-5 x+6=(x-2)(x-3)$ of the denominator can be used for partial fractions:

$$
\frac{x}{x^{2}-5 x+6}=\frac{A}{x-2}+\frac{B}{x-3} \quad \Rightarrow \quad x=A(x-3)+B(x-2)
$$

This implies $(A+B) x+(-3 A-2 B)=x$, and hence $A+B=1$ and $-3 A-2 B=0$. Hence, we get $B=3$ (for instance by adding 3 times the first equation to the second equation), and hence, $A=-2$. This gives the following integral

$$
\begin{aligned}
\int_{0}^{1} \frac{x}{x^{2}-5 x+6} \mathrm{~d} x & =\int_{0}^{1} \frac{-2}{x-2}+\frac{3}{x-3} \mathrm{~d} x=[-2 \ln |x-2|+3 \ln |x-3|]_{0}^{1} \\
& =(-2 \ln 1+3 \ln 2)-(-2 \ln 2+3 \ln 3)=5 \ln 2-3 \ln 3
\end{aligned}
$$

(d) We solve $\int e^{\sqrt{x}} \mathrm{~d} x$ by the substitution $u=\sqrt{x}$, which gives $\mathrm{d} u=u^{\prime} \mathrm{d} x$ with $u^{\prime}=1 /(2 \sqrt{x})$. This implies

$$
\int e^{\sqrt{x}} \mathrm{~d} x=\int e^{u} \cdot(2 \sqrt{x}) \mathrm{d} u=\int e^{u} \cdot 2 u \mathrm{~d} u=\int 2 u e^{u} \mathrm{~d} u
$$

To solve this integral, we use integration by parts with $v^{\prime}=e^{u}$ and $w=2 u$, which gives $v=e^{u}$ and $w^{\prime}=2$ (we use the symbols v and w instead of u and v, since u has already been used in the substitution):

$$
\int 2 u e^{u} \mathrm{~d} u=2 u e^{u}-\int 2 \cdot e^{u} \mathrm{~d} u=2 u e^{u}-2 e^{u}+\mathcal{C}=(2 \sqrt{x}-2) e^{\sqrt{x}}+\mathcal{C}
$$

(e) The graph of $f(x)=x^{3}-x$ has zeros given by $x^{3}-x=x\left(x^{2}-1\right)=0$ which gives $x=-1,0,1$. The graph is underneath the x-axis in the interval $(0,1)$ and above the x-axis for $x>1$. The straight line L has equation $y=3 x$ and the intersection with the graph of f is given by

$$
x^{3}-x=3 x \quad \Rightarrow \quad x^{3}-4 x=x\left(x^{2}-4\right)=0
$$

Hence, the intersections are $x=-2, x=0$, and $x=2$. Therefore, the part of the plane R is between the line L and the x-axis in the interval $[0,1]$, and between the line L and the graph of f in the interval [1,2]. The part of the plane is shown (in color) in the figure below, and the area of R is given by

$$
\begin{aligned}
A(R) & =\int_{0}^{1} 3 x \mathrm{~d} x+\int_{1}^{2} 3 x-\left(x^{3}-x\right) \mathrm{d} x=\left[\frac{3}{2} x^{2}\right]_{0}^{1}+\int_{1}^{2} 4 x-x^{3} \mathrm{~d} x \\
& =\frac{3}{2}+\left[2 x^{2}-\frac{1}{4} x^{4}\right]_{1}^{2}=\frac{3}{2}+(8-4)-\left(2-\frac{1}{4}\right)=3+\frac{1}{2}+\frac{1}{4}=\frac{15}{4}=3.75
\end{aligned}
$$

Question 3.

(a) We use cofactor expansion along the first row to compute the determinant:

$$
\left|\begin{array}{ccc}
t & 1 & t \\
1 & t & 2 \\
t & 2 & t
\end{array}\right|=t\left(t^{2}-4\right)-1(t-2 t)+t\left(2-t^{2}\right)=t^{3}-4 t+t+2 t-t^{3}=-t
$$

(b) When $t=1$, we get $\operatorname{det}(A)=-1 \neq 0$. Hence, A has an inverse matrix given by

$$
A^{-1}=\frac{1}{|A|}\left(\begin{array}{ccc}
C_{11} & C_{12} & C_{13} \\
C_{21} & C_{22} & C_{23} \\
C_{31} & C_{32} & C_{33} \\
2 &
\end{array}\right)^{T}
$$

where $C_{i j}$ is the cofactor of A in position (i, j). With $t=1$, the inverse matrix is given by

$$
A=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 2 \\
1 & 2 & 1
\end{array}\right) \quad \Rightarrow \quad A^{-1}=\frac{1}{-1}\left(\begin{array}{ccc}
-3 & 1 & 1 \\
1 & 0 & -1 \\
1 & -1 & 0
\end{array}\right)^{T}=\left(\begin{array}{ccc}
3 & -1 & -1 \\
-1 & 0 & 1 \\
-1 & 1 & 0
\end{array}\right)
$$

(c) The linear system has a solution when $|A|=-t \neq 0$, that is when $t \neq 0$. We consider the case $t=0$: The linear system has infinitely many solutions in thise case since $|A|=0$ and $\mathbf{b}=\mathbf{0}$, i.e., there is no pivot in the final column and at least one degree of freedom. We conclude that $A \mathbf{x}=\mathbf{b}$ has a least one solution for all values of t.

Question 4.

(a) The function f is defined for all (x, y) such that $x+y+1 \neq 0$, that is $x+y \neq-1$. We compute the partial derivatives of f by using the quotient rule for differentiation:

$$
\begin{aligned}
& f_{x}^{\prime}=\frac{y u-x y \cdot 1}{u^{2}}=\frac{y(x+y+1)-x y}{u^{2}}=\frac{y(y+1)}{u^{2}} \\
& f_{y}^{\prime}=\frac{x u-x y \cdot 1}{u^{2}}=\frac{x(x+y+1)-x y}{u^{2}}=\frac{x(x+1)}{u^{2}}
\end{aligned}
$$

We write $u=x+y+1$ for the denominator in order to make the expressions shorter. The stationary points are given by $f_{x}^{\prime}=f_{y}^{\prime}=0$, which gives $y(y+1)=0$ and $x(x+1)=0$. Hence, $x=0$ or $x=-1$, and $y=0$ or $y=-1$, ad we get the points $(x, y)=(0,0),(-1,0),(0,-$ $1),(-1,-1)$. We see that in these points, $u=1 \mathrm{i}(0,0), u=0$ in $(0,-1)$ and $(-1,0)$, and $u=-1$ in $(-1,-1)$. Hence, the stationary points for f are only the points

$$
(x, y)=(0,0),(-1,-1)
$$

(b) In order to use the second derivative test, we find the Hessian matrix in the two stationary points. We begin by computing the second order partial derivatives:

$$
\begin{aligned}
f_{x x}^{\prime \prime} & =\left(\frac{y(y+1)}{u^{2}}\right)_{x}^{\prime}=y(y+1) \cdot(-2) u^{-3} \cdot 1=\frac{-2 y(y+1)}{u^{3}} \\
f_{x y}^{\prime \prime} & =\left(\frac{y(y+1)}{u^{2}}\right)_{y}^{\prime}=\frac{(2 y+1) \cdot u^{2}-y(y+1) \cdot 2 u \cdot 1}{u^{4}} \\
& =\frac{(2 y+1)(x+y+1)-2 y(y+1)}{u^{3}}=\frac{2 x y+x+y+1}{u^{3}} \\
f_{y y}^{\prime \prime} & =\left(\frac{x(x+1)}{u^{2}}\right)_{y}^{\prime}=x(x+1) \cdot(-2) u^{-3} \cdot 1=\frac{-2 x(x+1)}{u^{3}}
\end{aligned}
$$

We see that $f_{x x}^{\prime \prime}=f_{y y}^{\prime \prime}=0$ for each of the two stationary points since $x(x+1)=y(y+1)=0$. We use the expression for $f_{x y}^{\prime \prime}$ above to determine the Hessian in the two stationary points:

$$
H(f)(0,0)=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad H(f)(-1,-1)=\left(\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right)
$$

Since the determinant of the two matrices is -1 , the stationary points of f are saddle points. Since these are the only candidates for the maximum and minimum for f, the function f has neither maximum nor minimum value.

Question 5.

(a) We use the Lagrange multiplier method with $\mathcal{L}=x-y-\lambda\left(x^{2}+x y+y^{2}-3\right)$ in order to find candidate points. The Lagrange conditions are

$$
\begin{aligned}
\mathcal{L}_{x}^{\prime}=1-\lambda(2 x+y) & =0 \\
\mathcal{L}_{y}^{\prime}=-1-\lambda(x+2 y) & =0 \\
x^{2}+x y+y^{2} & =3
\end{aligned}
$$

We find x and y expressed via λ from the first two equations. We get

$$
2 x+y=1 / \lambda, \quad x+2 y=-1 / \lambda
$$

In order to simplify the writing, we let $t=1 / \lambda$. Then, we solve the two equations for x and y, for instance by Gaussian elimination:

$$
\left(\begin{array}{cc|c}
2 & 1 & t \\
1 & 2 & -t
\end{array}\right) \rightarrow\left(\begin{array}{cc|c}
1 & 2 & -t \\
2 & 1 & t
\end{array}\right) \rightarrow\left(\begin{array}{cc|c}
1 & 2 & -t \\
0 & -3 & 3 t
\end{array}\right)
$$

By back substitution, this gives $-3 y=3 t$, or $y=-t$, and $x+2(-t)=-t$, or $x=t$. Then, we insert these expressions into the constraint and get that $x^{2}+x y+y^{2}=t^{2}+t(-t)+(-t)^{2}=3$, or $t^{2}=3$, which gives $t= \pm \sqrt{3}$. Since $t=1 / \lambda$, we get $\lambda=1 / t= \pm 1 / \sqrt{3}$. This gives the candidate points:

$$
(x, y ; \lambda)=(\sqrt{3},-\sqrt{3} ; 1 / \sqrt{3}),(-\sqrt{3}, \sqrt{3} ;-1 / \sqrt{3})
$$

with $f(\sqrt{3},-\sqrt{3})=2 \sqrt{3}$ og $f(-\sqrt{3}, \sqrt{3})=-2 \sqrt{3}$.
(b) A points has degenerate constraint if $g_{x}^{\prime}=g_{y}^{\prime}=0$, where $g(x, y)=x^{2}+x y+y^{2}$. This gives

$$
g_{x}^{\prime}=2 x+y=0, g_{y}^{\prime}=x+2 y=0
$$

This implies that $y=-2 x$ from the first equation, and $x+2(-2 x)=0$, or $-3 x=0$ when inserted into the second equation. Hence, the only point with degenerate constraint is $(x, y)=$ $(0,0)$, but this is not a admissible point since $g(0,0)=0 \neq 3$. We conclude that there are no admissible points with degenerate constraint for this problem.
(c) Note that the set D of feasible points, given by the equation $g(x, y)=x^{2}+x y+y^{2}=3$, is a compact set: It is closed since it is given by an equation (i.e., an equality), and it is also bounded: To see this, we write the equation in the following way by completing the squares:

$$
x^{2}+x y+y^{2}=\left(x+\frac{1}{2} y\right)^{2}+y^{2}-\frac{1}{4} y^{2}=\left(x+\frac{1}{2} y\right)^{2}+\frac{3}{4} y^{2}=3
$$

Since the left hand side is a sum of squares, we get that $(x+y / 2)^{2} \leq 3$ and $3 y^{2} / 4 \leq 3$. The final inequality gives $y^{2} \leq 4$, i.e., $-2 \leq y \leq 2$. For each y-value in this interval, the following must hold: $-\sqrt{3} \leq x+y / 2 \leq \sqrt{3}$. Hence, $-\sqrt{3}-y / 2 \leq x \leq \sqrt{3}-y / 2$. By using the interval of possible y-values, we see that $-\sqrt{3}-1 \leq x \leq \sqrt{3}+1$. We conclude that the set of feasible points is bounded, and hence compact. By the extreme value theorem, the problem has a maximum, and the only candidates for a maximum are those we found in (a). Hence, we get that

$$
f_{\max }=f(\sqrt{3},-\sqrt{3})=2 \sqrt{3}
$$

since this candidate points has the largest f-value of the two points.

