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Question 1.

(a) We write down the extended matrix of the system, and use elementary row operations:1 2 1 3 4
2 4 5 7 14
1 2 4 4 10

 →

1 2 1 3 4
0 0 3 1 6
0 0 3 1 6

 →

1 2 1 3 4
0 0 3 1 6
0 0 0 0 0


The result is an echelon form, and we have marked the pivot positions in blue. Hence, there are
infinitely many solutions, with y and w free when we write x = (x,y,z,w) for the unknown. We
find the solution by back substitution, where we ignore the row of zeros at the bottom, as this
gives a trivial equation: From the second equation, we find 3z+w = 6, or z = (6−w)/3 = 2−
w/3. The first equation gives x+2y+z+3w = 4, or x = 4−2y−(2−w/3)−3w = 2−2y−8w/3.
Hence, the solution of the linear system can be written

x =


2− 2y − 8w/3

y
2− w/3

w

 =


2
0
2
0

+ y


−2
1
0
0

+
w

3


−8
0
−1
3


where y,w are free variables.

(b) We know that w is a linear combination of the column vectors of A if and only if the linear
system Ax = w has solutions. We repeat the row operations above with b replaced by w:1 2 1 3 a
2 4 5 7 b
1 2 4 4 c

 →

1 2 1 3 a
0 0 3 1 b− 2a
0 0 3 1 c− a

 →

1 2 1 3 a
0 0 3 1 b− 2a
0 0 0 0 (c− a)− (b− 2a)


Since (c−a)− (b−2a) = a− b+ c, we find that the linear system has infinitely many solutions
(two degrees of freedom) if a − b + c = 0, and no solutions otherwise (since in this case, we
have a pivot in the final column). Hence, w is a linear combination of the column vectors in
A for the values of (a,b,c) where a− b+ c = 0.

Question 2.

(a) We use integration by parts with u′ = 4x and v = lnx. Hence, we get that u = 2x2 and
v′ = 1/x. Based on this, we can calculate the indefinite integral∫

4x lnx dx = 2x2 lnx−
∫

2x2 · 1
x

dx = 2x2 lnx−
∫

2x dx = 2x2 lnx− x2 + C

Hence, the definite integral is∫ 2

1
4x lnx dx =

[
2x2 lnx− x2

]2
1
= 8 ln 2− 4− (−1) = 8 ln 2− 3

(b) We use the substitution u = x + 1, with du = dx and x = u − 1, and the power rule for
integration to get that∫ 1

0

3x√
x+ 1

dx =

∫ 2

1

3(u− 1)√
u

du = 3

∫ 2

1
u1/2 − u−1/2 du = 3

[
2

3
u3/2 − 2u1/2

]2
1

since the new bounds of the definite integral are given from that x = 0 implies u = 1 and
x = 1 implies u = 2. Hence,∫ 1

0

3x√
x+ 1

dx =
[
2u3/2 − 6u1/2

]2
1
= 4

√
2− 6

√
2− 2− (−6) = 4− 2

√
2

(c) The factorization x2 − 5x + 6 = (x − 2)(x − 3) of the denominator can be used for partial
fractions:

x

x2 − 5x+ 6
=

A

x− 2
+

B

x− 3
⇒ x = A(x− 3) +B(x− 2)
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This implies (A+ B)x+ (−3A− 2B) = x, and hence A+ B = 1 and −3A− 2B = 0. Hence,
we get B = 3 (for instance by adding 3 times the first equation to the second equation), and
hence, A = −2. This gives the following integral∫ 1

0

x

x2 − 5x+ 6
dx =

∫ 1

0

−2

x− 2
+

3

x− 3
dx = [−2 ln |x− 2|+ 3 ln |x− 3|]10

= (−2 ln 1 + 3 ln 2)− (−2 ln 2 + 3 ln 3) = 5 ln 2− 3 ln 3

(d) We solve
∫
e
√
x dx by the substitution u =

√
x, which gives du = u′ dx with u′ = 1/(2

√
x).

This implies ∫
e
√
x dx =

∫
eu · (2

√
x) du =

∫
eu · 2u du =

∫
2u eu du

To solve this integral, we use integration by parts with v′ = eu and w = 2u, which gives v = eu

and w′ = 2 (we use the symbols v and w instead of u and v, since u has already been used in
the substitution):∫

2ueu du = 2ueu −
∫

2 · eu du = 2ueu − 2eu + C = (2
√
x− 2)e

√
x + C

(e) The graph of f(x) = x3−x has zeros given by x3−x = x(x2−1) = 0 which gives x = −1, 0, 1.
The graph is underneath the x-axis in the interval (0,1) and above the x-axis for x > 1. The
straight line L has equation y = 3x and the intersection with the graph of f is given by

x3 − x = 3x ⇒ x3 − 4x = x(x2 − 4) = 0

Hence, the intersections are x = −2, x = 0, and x = 2. Therefore, the part of the plane R is
between the line L and the x-axis in the interval [0,1], and between the line L and the graph
of f in the interval [1,2]. The part of the plane is shown (in color) in the figure below, and the
area of R is given by

A(R) =

∫ 1

0
3x dx+

∫ 2

1
3x− (x3 − x) dx =

[
3

2
x2

]1
0

+

∫ 2

1
4x− x3 dx

=
3

2
+

[
2x2 − 1

4
x4

]2
1

=
3

2
+ (8− 4)− (2− 1

4
) = 3 +

1

2
+

1

4
=

15

4
= 3.75

x

y

−2 −1 1 2

−2

−1

1

2

3

4

5

6

Question 3.

(a) We use cofactor expansion along the first row to compute the determinant:∣∣∣∣∣∣
t 1 t
1 t 2
t 2 t

∣∣∣∣∣∣ = t(t2 − 4)− 1(t− 2t) + t(2− t2) = t3 − 4t+ t+ 2t− t3 = −t

(b) When t = 1, we get det(A) = −1 ̸= 0. Hence, A has an inverse matrix given by

A−1 =
1

|A|

C11 C12 C13

C21 C22 C23

C31 C32 C33

T
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where Cij is the cofactor of A in position (i,j). With t = 1, the inverse matrix is given by

A =

1 1 1
1 1 2
1 2 1

 ⇒ A−1 =
1

−1

−3 1 1
1 0 −1
1 −1 0

T

=

 3 −1 −1
−1 0 1
−1 1 0


(c) The linear system has a solution when |A| = −t ̸= 0, that is when t ̸= 0. We consider the case

t = 0: The linear system has infinitely many solutions in thise case since |A| = 0 and b = 0,
i.e., there is no pivot in the final column and at least one degree of freedom. We conclude that
Ax = b has a least one solution for all values of t.

Question 4.

(a) The function f is defined for all (x,y) such that x+y+1 ̸= 0, that is x+y ̸= −1. We compute
the partial derivatives of f by using the quotient rule for differentiation:

f ′
x =

yu− xy · 1
u2

=
y(x+ y + 1)− xy

u2
=

y(y + 1)

u2

f ′
y =

xu− xy · 1
u2

=
x(x+ y + 1)− xy

u2
=

x(x+ 1)

u2

We write u = x + y + 1 for the denominator in order to make the expressions shorter. The
stationary points are given by f ′

x = f ′
y = 0, which gives y(y+1) = 0 and x(x+1) = 0. Hence,

x = 0 or x = −1, and y = 0 or y = −1, ad we get the points (x,y) = (0,0), (−1,0), (0, −
1), (−1, − 1). We see that in these points, u = 1 i (0,0), u = 0 in (0, − 1) and (−1,0), and
u = −1 in (−1,− 1). Hence, the stationary points for f are only the points

(x,y) = (0,0), (−1,− 1)

(b) In order to use the second derivative test, we find the Hessian matrix in the two stationary
points. We begin by computing the second order partial derivatives:

f ′′
xx =

(
y(y + 1)

u2

)′

x

= y(y + 1) · (−2)u−3 · 1 =
−2y(y + 1)

u3

f ′′
xy =

(
y(y + 1)

u2

)′

y

=
(2y + 1) · u2 − y(y + 1) · 2u · 1

u4

=
(2y + 1)(x+ y + 1)− 2y(y + 1)

u3
=

2xy + x+ y + 1

u3

f ′′
yy =

(
x(x+ 1)

u2

)′

y

= x(x+ 1) · (−2)u−3 · 1 =
−2x(x+ 1)

u3

We see that f ′′
xx = f ′′

yy = 0 for each of the two stationary points since x(x+1) = y(y+1) = 0.
We use the expression for f ′′

xy above to determine the Hessian in the two stationary points:

H(f)(0,0) =

(
0 1
1 0

)
, H(f)(−1,− 1) =

(
0 −1
−1 0

)
Since the determinant of the two matrices is −1, the stationary points of f are saddle points.
Since these are the only candidates for the maximum and minimum for f , the function f has
neither maximum nor minimum value.

Question 5.

(a) We use the Lagrange multiplier method with L = x− y− λ(x2 + xy+ y2 − 3) in order to find
candidate points. The Lagrange conditions are

L′
x = 1− λ(2x+ y) = 0

L′
y = −1− λ(x+ 2y) = 0

x2 + xy + y2 = 3
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We find x and y expressed via λ from the first two equations. We get

2x+ y = 1/λ, x+ 2y = −1/λ

In order to simplify the writing, we let t = 1/λ. Then, we solve the two equations for x and
y, for instance by Gaussian elimination:(

2 1 t
1 2 −t

)
→

(
1 2 −t
2 1 t

)
→

(
1 2 −t
0 −3 3t

)
By back substitution, this gives −3y = 3t, or y = −t, and x+2(−t) = −t, or x = t. Then, we
insert these expressions into the constraint and get that x2+xy+ y2 = t2+ t(−t)+ (−t)2 = 3,
or t2 = 3, which gives t = ±

√
3. Since t = 1/λ, we get λ = 1/t = ±1/

√
3. This gives the

candidate points:

(x,y;λ) = (
√
3,−

√
3; 1/

√
3), (−

√
3,
√
3;−1/

√
3)

with f(
√
3,−

√
3) = 2

√
3 og f(−

√
3,
√
3) = −2

√
3.

(b) A points has degenerate constraint if g′x = g′y = 0, where g(x,y) = x2 + xy + y2. This gives

g′x = 2x+ y = 0, g′y = x+ 2y = 0

This implies that y = −2x from the first equation, and x + 2(−2x) = 0, or −3x = 0 when
inserted into the second equation. Hence, the only point with degenerate constraint is (x,y) =
(0,0), but this is not a admissible point since g(0,0) = 0 ̸= 3. We conclude that there are no
admissible points with degenerate constraint for this problem.

(c) Note that the set D of feasible points, given by the equation g(x,y) = x2 + xy + y2 = 3, is
a compact set: It is closed since it is given by an equation (i.e., an equality), and it is also
bounded: To see this, we write the equation in the following way by completing the squares:

x2 + xy + y2 = (x+
1

2
y)2 + y2 − 1

4
y2 = (x+

1

2
y)2 +

3

4
y2 = 3

Since the left hand side is a sum of squares, we get that (x + y/2)2 ≤ 3 and 3y2/4 ≤ 3. The
final inequality gives y2 ≤ 4, i.e., −2 ≤ y ≤ 2. For each y-value in this interval, the following
must hold: −

√
3 ≤ x+ y/2 ≤

√
3. Hence, −

√
3− y/2 ≤ x ≤

√
3− y/2. By using the interval

of possible y-values, we see that −
√
3− 1 ≤ x ≤

√
3 + 1. We conclude that the set of feasible

points is bounded, and hence compact. By the extreme value theorem, the problem has a
maximum, and the only candidates for a maximum are those we found in (a). Hence, we get
that

fmax = f(
√
3,−

√
3) = 2

√
3

since this candidate points has the largest f -value of the two points.

4


