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Question 1.
(a) We write down the extended matrix of the system, and use elementary row operations:

1 21 3|4 1 21 3|4 1 21 3|4
2 45 7(14] - (00 3 1|6] — (0 0 3 1|6
1 2 4 4|10 0 03 1|6 0 00 0/0

The result is an echelon form, and we have marked the pivot positions in blue. Hence, there are
infinitely many solutions, with y and w free when we write x = (z,y,z,w) for the unknown. We
find the solution by back substitution, where we ignore the row of zeros at the bottom, as this
gives a trivial equation: From the second equation, we find 3z+w =6, or z = (6 —w)/3 = 2 —
w/3. The first equation gives z+2y+z+3w =4, or v =4—2y—(2—w/3)—3w = 2—2y—8w/3.
Hence, the solution of the linear system can be written

2 -2y —8w/3 2 -2 -8

B y o 1| wlo
=1 2 w3 o Y| o | T3 |1
w 0 0 3

where y,w are free variables.
(b) We know that w is a linear combination of the column vectors of A if and only if the linear
system Ax = w has solutions. We repeat the row operations above with b replaced by w:

1 21 3]|a 1 21 3 a 1 21 3 a
2 4 5 7/b)] - 100 3 1{b—2a] — [0 0 3 1 b—2a
1 2 4 4]c 003 1|c—a 0 00 0f(c—a)—(b—2a)
Since (¢—a) — (b—2a) = a — b+ ¢, we find that the linear system has infinitely many solutions

(two degrees of freedom) if a — b+ ¢ = 0, and no solutions otherwise (since in this case, we
have a pivot in the final column). Hence, w is a linear combination of the column vectors in
A for the values of (a,b,c) where a — b+ ¢ = 0.

Question 2.

(a) We use integration by parts with u' = 42 and v = Inz. Hence, we get that u = 222 and
v' = 1/z. Based on this, we can calculate the indefinite integral

1
/4xlnm dx:2x21nx/2x2- dx:2x2lnaj/2x dz = 22°Inz — 22+ C
T

Hence, the definite integral is
2
/ drlnzx de = [2x2lnx - .%‘2]? =8In2—-4—-(-1)=8n2-3
1

(b) We use the substitution u = x + 1, with du = dz and z = u — 1, and the power rule for
integration to get that

1 2 . 2 2
/ 3z dx:/ 3(U1)du:3/ ul/? — 12 du:3[2u3/2—2u1/2}
o vr+1 1 Vu 1 3 1

since the new bounds of the definite integral are given from that x = 0 implies v = 1 and
x = 1 implies u = 2. Hence,

b 3x 3 2
_ 12 _ 62" = 4/ — o (—f)=4—
/0 Vet [Zu 6u L VZ - 6v2 -2 (—6) 22

(c) The factorization 22 — 5x + 6 = (z — 2)(x — 3) of the denominator can be used for partial
fractions:

T A B
_ = A(x — B(x —2
2 -5 +6 x—2+x—3 - 7 (@=3)+ Bz )

1



This implies (A + B)z + (—3A — 2B) = z, and hence A+ B =1 and —3A4 — 2B = 0. Hence,
we get B = 3 (for instance by adding 3 times the first equation to the second equation), and
hence, A = —2. This gives the following integral

/1$dx—/1 =2 3 gy [-2lm|r—2+ 3z — 3!
0o 225z +6 ~  Jo z—-2 x-3 v . 0
=(—2In1+43In2) - (-2In2+3In3) =5In2 —-3In3

(d) We solve [eV®dz by the substitution u = y/x, which gives du = «'dz with v/ = 1/(2/x).
This implies

/eﬁdx—/e“-(%/fc) du—/e“~2udu—/2ue“du

To solve this integral, we use integration by parts with v' = e* and w = 2u, which gives v = e*
and w’ = 2 (we use the symbols v and w instead of u and v, since u has already been used in
the substitution):

/2ue“ du:2ue“—/2-e“ du = 2uet — 2e* 4+ C = (2y/z — 2)eV® +C

(e) The graph of f(x) = 2% — z has zeros given by > — 2 = 2(22 — 1) = 0 which gives z = —1,0, 1.
The graph is underneath the z-axis in the interval (0,1) and above the z-axis for > 1. The
straight line L. has equation y = 3z and the intersection with the graph of f is given by

2 —r=3r = 2—dr=a(@®-4)=0

Hence, the intersections are £ = —2, x = 0, and « = 2. Therefore, the part of the plane R is

between the line L and the z-axis in the interval [0,1], and between the line L and the graph

of f in the interval [1,2]. The part of the plane is shown (in color) in the figure below, and the
area of R is given by

1 2 1 2
A(R) = / 3z dz +/ 3r— (2% —z) do = [gxﬂ +/ 4o — 23 dx
0 1 1
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Question 3.
(a) We use cofactor expansion along the first row to compute the determinant:

i 11t ; =t(t?—4) -1t —2) +t(2—t*) =3 — 4t +t+ 2t —t3 = —t
t 2t
(b) When ¢t =1, we get det(A) = —1 # 0. Hence, A has an inverse matrix given by
RS gll gm g13 g
=y (G G2 O

C31 Cs2 Csg
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where Cj; is the cofactor of A in position (7,j). With ¢ = 1, the inverse matrix is given by

T
1 3 -1 -1

1 1 1
A=111 2| = A'l=— =|-1 0 1
12 1 -1 1 1 0
(¢) The linear system has a solution when |A| = —¢ # 0, that is when ¢ # 0. We consider the case
t = 0: The linear system has infinitely many solutions in thise case since |A| = 0 and b = 0,
i.e., there is no pivot in the final column and at least one degree of freedom. We conclude that
Ax = b has a least one solution for all values of ¢.

Question 4.

(a) The function f is defined for all (z,y) such that x +y+1 # 0, that is z+y # —1. We compute
the partial derivatives of f by using the quotient rule for differentiation:

poyuryl _ylety+D -2y yly+1)

v u? u? u?
, wu—xy-1  z(x+y+1)—zy  z(r+1)
fy= w2 - w2 T2

We write u = ¢ + y + 1 for the denominator in order to make the expressions shorter. The
stationary points are given by f. = fz// = 0, which gives y(y+1) = 0 and z(x + 1) = 0. Hence,
x=0o0rx=—-1,and y = 0 or y = —1, ad we get the points (z,y) = (0,0),(—1,0), (0, —
1),(—=1, —1). We see that in these points, v = 11 (0,0), v = 0 in (0, — 1) and (—1,0), and
u=—11n (=1, — 1). Hence, the stationary points for f are only the points

(:va) = (030)3 (_13 - 1)

(b) In order to use the second derivative test, we find the Hessian matrix in the two stationary
points. We begin by computing the second order partial derivatives:

23 = <y(yu—;-1)> —y(y+1) - (—2u? 1= "2

s (yy+D\  (2y+1)-u-yly+1)-2u-1
Ty U2 y_ U4

CQy+D+y+1)—2yy+1) 2wy+r+y+1

B u? B u?

—2x(z +1)
w3

iy = (””) et 1) (2=

We see that f;, = f;, =0 for each of the two stationary points since z(x + 1) = y(y+1) = 0.
We use the expressmn for y above to determine the Hessian in the two stationary points:

H(f)(0,0):G) é) H(f)(—1,—1)=<_01 _01>

Since the determinant of the two matrices is —1, the stationary points of f are saddle points.
Since these are the only candidates for the maximum and minimum for f, the function f has
neither maximum nor minimum value.

Question 5.

(a) We use the Lagrange multiplier method with £ = x —y — A(2% + 2y + y? — 3) in order to find
candidate points. The Lagrange conditions are

L.=1-X2z+y)=0
!/

Ly,=—-1-XNz+2y)=0

x2+xy+y2:3



We find x and y expressed via A from the first two equations. We get
2 +y=1/\, z+2y=-1/A
In order to simplify the writing, we let t = 1/A\. Then, we solve the two equations for x and
vy, for instance by Gaussian elimination:
—t . 1 2 | —t
t 0 —31 3t

21t_>12
1 2]t 2 1

By back substitution, this gives —3y = 3t, or y = —t, and x + 2(—t) = —t, or z = t. Then, we
insert these expressions into the constraint and get that 22 +xy+y? = 2 +t(—t) + (-t)? = 3,
or t*> = 3, which gives t = ++/3. Since t = 1/A\, we get A = 1/t = :tl/\/g. This gives the
candidate points:

(z.y; A) = (V3,—V3;1/V3), (—=V3,V3;-1/V3)
with f(v3, — v3) = 2V3 og f(—V3,V/3) = —2V3.

A points has degenerate constraint if g, = g; =0, where g(z,y) = 22 + xy + y?. This gives
g;:2x+y:(), g;:x—l—Zy:O

This implies that y = —2x from the first equation, and x + 2(—2z) = 0, or —3x = 0 when
inserted into the second equation. Hence, the only point with degenerate constraint is (z,y) =
(0,0), but this is not a admissible point since ¢g(0,0) = 0 # 3. We conclude that there are no
admissible points with degenerate constraint for this problem.

Note that the set D of feasible points, given by the equation g(x,y) = 2? + zy + y> = 3, is
a compact set: It is closed since it is given by an equation (i.e., an equality), and it is also
bounded: To see this, we write the equation in the following way by completing the squares:

1 1 1 3
Praytyt =@t gyt yt - =@k gyt Yt =3

Since the left hand side is a sum of squares, we get that (z +/2)? < 3 and 3y?/4 < 3. The
final inequality gives y? < 4, i.e., —2 < y < 2. For each y-value in this interval, the following
must hold: —v/3 < z + y/2 < V3. Hence, —v/3 — y/2 <z < V3 — y/2. By using the interval
of possible y-values, we see that —V3—-1<z <3+ 1. We conclude that the set of feasible
points is bounded, and hence compact. By the extreme value theorem, the problem has a
maximum, and the only candidates for a maximum are those we found in (a). Hence, we get

that
fmax = f(f, - \/g) = 2\/§

since this candidate points has the largest f-value of the two points.



