Problem 1.

Solve the optimization problem. Illustrate the set of admissible points D, along with suitable level curves for f in the same coordinate system:

- a) $\max / \min f(x,y) = x^2 + y^2$ when x + y = 2
- b) max / min $f(x,y) = 4x^2 + 9y^2$ when 2x + 3y = 6
- c) $\max / \min f(x,y) = y$ when $x^2 y^2 = 1$

Problem 2.

Solve the optimization problem: $\max / \min f(x,y) = x^3 + 3xy + y^3$ when xy = 1

Problem 3.

Consider the curve C given by the equation $y(x^2 + y^2) = 2(x^2 - y^2)$.

- a) Find all points on the curve C where y = -1.
- b) Find the tangent of C in each point where y = -1.
- c) Solve the optimization problem: max / min f(x,y) = y when $y(x^2 + y^2) = 2(x^2 y^2)$

Problem 4.

Consider the function defined by $f(x,y) = 1 + x^2 + y^2 + x^2y^2$.

- a) Find all stationary points for f.
- b) Compute the Hessian of f, and use this to classify the stationary points.
- c) Determine whether f has global maximum- or minimum values.
- d) Solve the Lagrange problem: $\max f(x,y) = x^2 + y^2 + x^2y^2$ when $x^2 + 2y^2 = 5$

Problem 5.

Consider the Lagrange problem $\max / \min f(x,y) = x^2 - xy + y^2$ when x + y = 2.

- a) Use the Lagrange multiplier method to find candidates $(x,y;\lambda)$ for the maximum and minimum.
- b) Write the function f(x,y) by using that $(x + y)^2 = 2^2 = 4$ in all admissible points (i.e., all points that satisfy the constraint). Use the Lagrange multiplier method to find candidates $(x,y;\lambda)$ for the maximum and minimum in this new Lagrange problem.
- c) Solve the constraint for one of the variables, and use this to simplify the expression for f(x,y) to a function in one variable. Solve the optimization problem you have now.
- d) Compare the previous answers and discuss the connection between the three methods. Then solve the optimization problem.

Answers to exercise session problems

Problem 1.

- a) $f_{\min} = 2$, no maximum value.
- b) $f_{\min} = 18$, no maximum value.
- c) No maximum nor minimum value.

Problem 2.

Neither maximum nor minimum exist.

Problem 3.

a) $(\pm \sqrt{1/3}, -1)$

- b) $y = 2 \mp 3\sqrt{3}x$
- c) $f_{\min} = -2$, no maximum value

Problem 4.

- a) (0,0)
- b) local minimum points
- c) $f_{\min} = 1$, no maximum value
- d) $f_{\rm max} = 7$

Problem 5.

- a) $(1,\!1;1)$
- b) (1,1;-3)
- c) (1,1)
- d) $f_{\min} = 1$, no maximum value.