Exercise session problems

Problem 1.

Determine the tangent line of the level curve $f(x, y)=c$ in $(x, y)=(1,1)$:
a) $f(x, y)=2 x+3 y, c=5$
b) $f(x, y)=x^{2}+y^{2}, c=2$
c) $f(x, y)=4 x^{2}-6 x y+9 y^{2}, c=7$
d) $f(x, y)=x^{2}-2 x+4 y^{2}, c=3$
e) $f(x, y)=x^{3}-3 x y+y^{3}, c=-1$
f) $f(x, y)=y^{2}-x^{3}+3 x, c=3$
g) $f(x, y)=x^{2} y^{2}-x^{2}-y^{2}+3, c=2$
h) $f(x, y)=\sqrt{x^{2}+y^{2}}, c=\sqrt{2}$

Problem 2.

Consider the function $f(x, y)=x^{2}-2 x+4 y^{2}$.
a) Show that the level curve $f(x, y)=c$ is an ellipse when $c>-1$, and determine the center $\left(x_{0}, y_{0}\right)$ of the ellipse and its half axis a and b. Use this to sketch the level curves for $c=0,1,2,3$ in the same coordinate system.
b) Find the tangent lines of the level curve through $(x, y)=(1,1)$ and through $(x, y)=(2,1 / 2)$, and draw the tangents.
c) Find $\nabla f(1,1)$ and $\nabla f(2,1 / 2)$, and draw these. What happens to the function values along the gradient?
d) Does it look like the function f has a minimum- or a maximum value? Explain why/why not.

Problem 3.

Consider the level curve $f(x, y)=c$ of the function $f(x, y)=x^{2}+4 x+y^{2}-2 y$. What kind of curve is this? Describe the gradient of f in a point on the level curve geometrically.

Problem 4.

Level curves for two functions f and g in the area $-4 \leq x, y \leq 4$ are shown in the figures below.

a) Find any local minimum points, maximum points and saddle points in the figure.
b) The functions f and g are two of the functions from Problem 1 (see also Problems 8-10 from Exercise sheet 39). Which ones?

Problem 5.

Find the gradient $\nabla f(1,1)$ of f in the point $(1,1)$, and use this to find the directional derivative $f_{\mathbf{a}}^{\prime}(1,1)$ of $f(x, y)$ in the point $(1,1)$ along the vector $\mathbf{a}=\left(a_{1}, a_{2}\right)$:
a) $f(x, y)=2 x+3 y$
b) $f(x, y)=x^{2}+y^{2}$
c) $f(x, y)=4 x^{2}-6 x y+9 y^{2}$
d) $f(x, y)=x^{2}-2 x+4 y^{2}$
e) $f(x, y)=x^{3}-3 x y+y^{3}$
f) $f(x, y)=y^{2}-x^{3}+3 x$
g) $f(x, y)=\sqrt{x^{2}+y^{2}}$

Problem 6.

Show that the gradient $\nabla f(a, b)$ is orthogonal to the tangent line of the level curve $f(x, y)=c$ in the point (a, b), and that f grows if we move a small step along the gradient.

Problem 7.

Find the global maximum- and minimum points, if they exist:
a) $f(x, y)=2 x+3 y$
b) $f(x, y)=x^{2}+y^{2}$
c) $f(x, y)=4 x^{2}-6 x y+9 y^{2}$
d) $f(x, y)=x^{2}-2 x+4 y^{2}$
e) $f(x, y)=x^{3}-3 x y+y^{3}$
f) $f(x, y)=y^{2}-x^{3}+3 x$
g) $f(x, y)=x^{2} y^{2}-x^{2}-y^{2}+3$
h) $f(x, y)=\sqrt{x^{2}+y^{2}}$

Optional: Exercises from the Norwegian textbook

Textbook [E]: Eriksen, Matematikk for økonomi og finans
Exercise book [O]: Eriksen, Matematikk for økonomi og finans - Oppgaver og Løsningsforslag

Exercises: $\quad[\mathrm{E}] 7.4 .3-7.4 .4,7.5 .1-7.5 .5$

Solution manual: \quad See [O] Ch. 7.4-7.5

Answers to the Exercise session problems

Problem 1.

a) $y=-2 x / 3+5 / 3$
b) $y=-x+2$
c) $y=-x / 6+7 / 6$
d) $y=1$
e) No tangent line.
f) $y=1$
g) No tangent line.
h) $y=-x+2$

Problem 2.

a) Ellipse with center in $(1,0)$ with half axis $a=\sqrt{c+1}$ and $b=\sqrt{c+1} / 2$.
b) The tangent lines are given by the equation $y=1$ and $y=-x / 2+3 / 2$.
c) $\nabla f(1,1)=\left(\begin{array}{ll}0 & 8\end{array}\right)^{T}$, and $\nabla f(2,1 / 2)=\left(\begin{array}{ll}2 & 4\end{array}\right)^{T}$, and the function values increase when we move along the gradient.
d) No maximum value (the half axis gets bigger the bigger c is). Minimum value $f(1,0)=-1$.

Problem 3.

The curve is a circle with center in $(-2,1)$ and radius $\sqrt{c+5}$. The gradient points away from the center of the circle.

Problem 4.

a) f has local min. in $(1,1)$ and saddle point in $(0,0)$, and g has local min. in $(-1,0)$ and saddle point in $(1,0)$
b) f is the function in e) and g is the function in f)

Problem 5.

a) $\nabla f(1,1)=\left(\begin{array}{ll}2 & 3\end{array}\right)^{T}, f_{\mathbf{a}}^{\prime}(1,1)=2 a_{1}+3 a_{2}$
b) $\nabla f(1,1)=\left(\begin{array}{ll}2 & 2\end{array}\right)^{T}, f_{\mathbf{a}}^{\prime}(1,1)=2 a_{1}+2 a_{2}$
c) $\nabla f(1,1)=\left(\begin{array}{ll}2 & 12\end{array}\right)^{T}, f_{\mathbf{a}}^{\prime}(1,1)=2 a_{1}+12 a_{2}$
d) $\nabla f(1,1)=\left(\begin{array}{ll}0 & 8\end{array}\right)^{T}, f_{\mathbf{a}}^{\prime}(1,1)=8 a_{2}$
e) $\nabla f(1,1)=\left(\begin{array}{ll}0 & 0\end{array}\right)^{T}, f_{\mathbf{a}}^{\prime}(1,1)=0$
f) $\nabla f(1,1)=\left(\begin{array}{ll}0 & 2\end{array}\right)^{T}, f_{\mathbf{a}}^{\prime}(1,1)=2 a_{2}$
g) $\nabla f(1,1)=(1 / \sqrt{2} \quad 1 / \sqrt{2})^{T}, f_{\mathbf{a}}^{\prime}(1,1)=\left(a_{1}+a_{2}\right) / \sqrt{2}$

Problem 7.

a) no global max/min.
b) $(0,0)$ is the global min.
c) $(0,0)$ is the global min.
d) $(1,0)$ is the global min.
e) no global \max / min.
f) no global \max / min.
g) no global \max / min.
h) $(0,0)$ is the global min.

