Exercise session problems

Problem 1.

Consider the vectors given by

$$
\mathbf{u}=\binom{1}{2}, \quad \mathbf{v}=\binom{3}{1}, \quad \mathbf{w}=\binom{-1}{5}
$$

Draw these vectors in a two-dimensional coordinate system. Then compute the following vectors, and draw them into the same coordinate system:
a) $\mathbf{u}+\mathbf{v}$
b) $\mathbf{v}+\mathrm{w}$
c) $\mathbf{v}-\mathbf{w}$
d) $2 \mathbf{u}$
e) $\mathbf{- v}$
f) $3 \mathbf{u}+\mathbf{w}$

Problem 2.

Solve the vector equation $x_{1} \mathbf{v}_{1}+x_{2} \mathbf{v}_{2}+x_{3} \mathbf{v}_{3}=\mathbf{b}$ for the vectors below. Is \mathbf{b} a linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$?

$$
\mathbf{v}_{1}=\left(\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right), \quad \mathbf{v}_{2}=\left(\begin{array}{l}
3 \\
1 \\
4
\end{array}\right), \quad \mathbf{v}_{3}=\left(\begin{array}{c}
1 \\
7 \\
-8
\end{array}\right), \quad \mathbf{b}=\left(\begin{array}{c}
2 \\
-1 \\
5
\end{array}\right)
$$

Problem 3.

Write the vector equation $x_{1} \mathbf{v}_{1}+x_{2} \mathbf{v}_{2}+x_{3} \mathbf{v}_{3}=\mathbf{b}$ in matrix form, and use this to solve the equation:

$$
\mathbf{v}_{1}=\left(\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right), \quad \mathbf{v}_{2}=\left(\begin{array}{l}
3 \\
1 \\
4
\end{array}\right), \quad \mathbf{v}_{3}=\left(\begin{array}{l}
1 \\
7 \\
a
\end{array}\right), \quad \mathbf{b}=\left(\begin{array}{c}
2 \\
-1 \\
5
\end{array}\right)
$$

Problem 4.

Solve the matrix equation $A \mathbf{x}=\mathbf{b}$ when

$$
A=\left(\begin{array}{ccc}
1 & 1 & 1 \\
2 & 1 & 4 \\
-1 & 1 & 1
\end{array}\right), \quad \mathbf{x}=\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right), \quad \mathbf{b}=\left(\begin{array}{c}
2 \\
-1 \\
5
\end{array}\right)
$$

Problem 5.

Consider the matrices

$$
A=\left(\begin{array}{ccc}
1 & 1 & 1 \\
2 & 1 & 4 \\
-1 & 1 & 1
\end{array}\right), \quad B=\left(\begin{array}{ccc}
0 & 1 & 2 \\
1 & 0 & -1 \\
1 & 2 & 4
\end{array}\right), \quad C=\left(\begin{array}{cc}
3 & 4 \\
1 & -2 \\
7 & 1
\end{array}\right)
$$

Compute the following expressions, whenever possible:
a) $A+B$
b) $2 A-3 B$
c) $A-C$
d) $A B$
e) $B C$
f) $A B C$
g) $A C$
h) A^{2}
i) $B A$
j) $C B$
k) C^{2}

1) $C^{T} A$

Problem 6.

Determine all (a, b, c, d) such that the vector \mathbf{b} is a linear combination of the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ given below. Use this to determine whether \mathbf{b} is a linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ when $(a, b, c, d)=(0,0,1,1)$.

$$
\mathbf{v}_{1}=\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right), \quad \mathbf{v}_{2}=\left(\begin{array}{l}
1 \\
2 \\
4 \\
3
\end{array}\right), \quad \mathbf{v}_{3}=\left(\begin{array}{c}
1 \\
-1 \\
1 \\
7
\end{array}\right), \quad \mathbf{b}=\left(\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right)
$$

Problem 7.

You have 400.000 NOK and are to invest in a portfolio of risky assets. You can chose a combination of the stocks A, B, C with prices $p_{A}=60 \mathrm{NOK}, p_{B}=75 \mathrm{NOK}$ and $p_{C}=320 \mathrm{NOK}$ per stock at the time of investment. We assume that at a given time in the future, one of three scenarios will happen. The prices of the stocks in these scenarios are given in the table below. Denote by x, y, z the number of stocks you buy of each of the three risky

	Price A	Price B	Price C
Purchase price	60	75	320
Scenario 1	80	80	350
Scenario 2	100	25	500
Scenario 3	40	100	55

assets.For simplicity, we assume that x, y, z can be arbitrary real numbers. Hence, we allow for buying a negative number of stocks (short selling), and the number of stocks does not have to be an integer.
a. Assume that the condition $60 x+75 y+320 z=400.000$ is satisfied. What does this condition mean?
b. Denote by R_{1}, R_{2} and R_{3} the profit from the portfolio in the three scenarios. Is it possible to chose the portfolio such that $\left(R_{1}, R_{2}, R_{3}\right)=(50.000,25.000,-100.000)$? Which portfolio must we chose in order for this to hold?
c. Is it possible to chose a portfolio of risky assets such that $R_{1}>0$ and $R_{2}=R_{3}=0$? Which portfolio must we chose in this case? Give an interpretation of your answer.
d. Describe all $\left(R_{1}, R_{2}, R_{3}\right)$ of possible profits in the three scenarios. Are there any portfolios such that $R_{1}, R_{2}, R_{3}>0$ (i.e., guaranteed profit in all scenarios)?

Problem 8.

Let A be a 2×3-matrix.
a) Is A symmetric?
b) Is $A^{T} A$ symmetric?
c) Compute $A^{T} A$ when $A=\left(\begin{array}{ccc}1 & -1 & 3 \\ 3 & 3 & 1\end{array}\right)$.

Problem 9.

Solve the matrix equation for X when $A=\left(\begin{array}{ll}1 & 3 \\ 2 & 5\end{array}\right)$:
a) $A X=I$
b) $X^{2}=A$
c) $A X=X A$

Optional: Exercises from the Norwegian textbook.

Textbook [E]: Eriksen, Matematikk for økonomi og finans
Exercise book [O]: Eriksen, Matematikk for økonomi og finans - Oppgaver og Løsningsforslag

Exercises:	$[\mathrm{E}] 6.5 .1-6.5 .6$
Solution manual:	See [O] Kap 6.5

Answers to exercise session problems

Problem 1.

a) $\binom{4}{3}$
b) $\binom{2}{6}$
c) $\binom{4}{-4}$
d) $\binom{2}{4}$
e) $\binom{-3}{-1}$
f) $\binom{2}{11}$

Problem 2.

The general solution is $(x, y, z)=(-4 z-1, z+1, z)$ with z free. A specific solution is found by (for instance) letting $z=0$, which gives $(-1,1,0)$. This means that $\mathbf{b}=-1 \cdot \mathbf{v}_{1}+1 \cdot \mathbf{v}_{2}$ is a linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$.

Problem 3.

For $a=-8$ there are infinitely many solutions $(x, y, z)=(-4 z-1, z+1, z)$ with z free (like in the previous exercise). For $a \neq-8$ there is exactly one solution $(x, y, z)=(-1,1,0)$.

Problem 4.

Exactly one solution $(x, y, z)=(-3 / 2,4,-1 / 2)$.

Problem 5.

а) $\left(\begin{array}{lll}1 & 2 & 3 \\ 3 & 1 & 3 \\ 0 & 3 & 5\end{array}\right)$
b) $\left(\begin{array}{ccc}2 & -1 & -4 \\ 1 & 2 & 11 \\ -5 & -4 & -10\end{array}\right)$
c) not defined
d) $\left(\begin{array}{ccc}2 & 3 & 5 \\ 5 & 10 & 19 \\ 2 & 1 & 1\end{array}\right)$
е) $\left(\begin{array}{cc}15 & 0 \\ -4 & 3 \\ 33 & 4\end{array}\right)$
f) $\left(\begin{array}{cc}44 & 7 \\ 158 & 19 \\ 14 & 7\end{array}\right)$
g) $\left(\begin{array}{cc}11 & 3 \\ 35 & 10 \\ 5 & -5\end{array}\right)$
h) $\left(\begin{array}{ccc}2 & 3 & 6 \\ 0 & 7 & 10 \\ 0 & 1 & 4\end{array}\right)$
i) $\left(\begin{array}{ccc}0 & 3 & 6 \\ 2 & 0 & 0 \\ 1 & 7 & 13\end{array}\right)$
j) not defined
k) not defined

1) $\left(\begin{array}{ccc}-2 & 11 & 14 \\ -1 & 3 & -3\end{array}\right)$

Problem 6.

This is a linear combination if $-7 a+9 b-5 c+3 d=0$, and $(a, b, c, d)=(0,0,1,1)$ does not correspond to a linear combination since these values do not satisfy the equation.

Problem 7.

a. This is a budget constraint, i.e., that the total cost of the risky assets we purchase is 400.000 NOK.
b. Yes, if we choose the portfolio $(x, y, z)=(11871 / 2,2250,500)$.
c. Yes, if $R_{1}=80.000$. Then, we have to choose the portfolio $(x, y, z) \approx\left(3333^{1 / 3}, 2666^{2} / 3,0\right)$. This means that we can invest without the risk of loss, and with positive expected profit (a very attractive situation!).
d. The triplets of profit $\left(R_{1}, R_{2}, R_{3}\right)$ that are attainable satisfy the equation $5 R_{1}-2 R_{2}-2 R_{3}=400.000$. We can choose the portfolio such that $R_{1}, R_{2}, R_{3}>0$ (i.e., guaranteen profit in all scenarios, an even more attractive situation!). For instance, we can attain the profit $R_{1}=R_{2}=R_{3}=400.000$.

Problem 8.

a) No
b) Yes
c) $\left(\begin{array}{ccc}10 & 8 & 6 \\ 8 & 10 & 0 \\ 6 & 0 & 10\end{array}\right)$

Problem 9.

a) $X=\left(\begin{array}{cc}-5 & 3 \\ 2 & -1\end{array}\right)$
b) no solution
c) $X=s\left(\begin{array}{cc}-4 & 3 \\ 2 & 0\end{array}\right)+t\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$

