Exam exercises

Problem 1.

Consider the function given by $f(x)=0,60 \ln (1+x)+0,40 \ln (1-x)$, defined for $0 \leq x<1$.
a. (6p) Find the maximum point $x=x^{*}$ and the maximum value $y=f\left(x^{*}\right)$ of f.
b. (6p) Determine whether f is convex or concave.
c. ($6 \mathbf{p}$) Show that $f(x)<0$ when $x>2 x^{*}$.
d. ($6 \mathbf{p}$) Sketch the graph of f.

For a complete solution manual, see Eksamen MET11803 05/2017, Oppgave 1.

Problem 2.

We consider the function given by

$$
f(x)=\frac{e^{1-\sqrt{x}}}{\sqrt{x}}, \quad x>0
$$

a. Compute $f^{\prime}(x)$.
b. Show that f is decreasing in the the area of definition $D_{f}=(0, \infty)$.
c. Determine the limits

$$
\lim _{x \rightarrow 0^{+}} f(x) \text { and } \lim _{x \rightarrow \infty} f(x)
$$

d. Make a rough sketch of the graph of f, based on what you have found out above, and mark the area between the graph of f and the x-axis (for $x>0$) in the sketch.

For a complete solution manual, see Eksamen MET11803 12/2018, Oppgave 3.

