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Chapter 1
Differential Equations

1.1 Introduction to differential equations

Let y(t) be a function in one variable. A differential equation in y(t) is an equation
that contains the derivative y′(t), or higher order derivatives such as y′′(t) and y′′′(t),
or both. The equations

y′(t)+2y(t) = 1, y′′(t)+ y(t) = 1, y′(t)+ y(t) · y′′(t) = t2

are examples of differential equations in y(t). We think of the function y(t) as the
unknown in these differential equations.

It is usual to write y,y′,y′′ for y(t),y′(t),y′′(t) to write differential equations in a
more compact form. The differential equations above would be written as

y′+2y = 1, y′′+ y = 1, y′+ yy′′ = t2

It is understood from the context that y is a function y = y(t) in one variable, and
that y′ and y′′ are the first and second order derivatives y′ = y′(t) and y′′ = y′′(t) of
this function. Sometimes, the notation ẏ is used for y′ and ÿ for y′′.

The order of a differential equation is the highest order derivative the appears in
the equation. A first order differential equation contains the derivative y′ but no other
derivatives. A second order differential equation contains y′′, and possibly y′, but no
higher order derivatives. Hence y′+2y= 1 is a first order differential equation, while
y′′+ y = 1 and y′+ yy′′ = t2 are second order differential equations.

To solve a differential equation means to find all functions y(t) that satisfy the
equation. Let us consider the differential equation y′+ 2y = 1 as an example. In
this case, the function y(t) = e−2t + 1/2 is a solution of the differential equation.
We can see this by substituting y with y(t) = e−2t + 1/2 and y′ with its derivative
y′(t) =−2e−2t . The left-hand side of the differential equation becomes

y′(t)+2y(t) =
(
−2e−2t +0

)
+2
(
e−2t +1/2

)
=−2e−2t +2e−2t +1 = 1

1



2 1 Differential Equations

and equals the right-hand side of the equation. This shows that y(t) = e−2t + 1/2
is a solution of y′+ 2y = 1. It is not clear from this computation whether or not
there are other solutions of this equation, and we need more systematic methods to
investigate this.

The equation y′ = 2t is an even simpler example of a differential equation. The
solutions of this differential equation are all functions y(t) with derivative y′(t) = 2t.
That is, the solutions are all antiderivatives of 2t, given by the indefinite integral∫

2t dt = t2 +C

The integration constant C is called an undetermined coefficient, since there is no
information in the differential equation that can be used to determine the value of C.
Hence, there is one solution y(t) = t2 +C for each value of C, and these solutions
form an infinite family. We call y(t) = t2 +C the general solution of the differential
equation; considered as a family, it contains all solutions of the differential equation.
For any given value of C, we obtain a particular solution of the differential equation,
such as

y(t) = t2, y(t) = t2−1, y(t) = t2 +
3
4

corresponding to the (randomly chosen) values C = 0, C = −1 and C = 3/4. We
show the graphs of these particular solutions below. One may easily imagine the
shape of the graph of other particular solutions, corresponding to other values of C.
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It is a hopeless task to solve differential equations in general. In this chapter, we
shall explain some techniques and methods that can be used to solve certain first
and second order differential equations. Others are simply too difficult to solve in
this way, and we must use approximation techniques (and often computers) to solve
them.
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Let us end this introduction by considering the first order differential equations
that can be written in the form y′ = f (t). All equations that belong to this class, such
as the example y′ = 2t considered above, can be solved by simple integration:

Differential equations solvable by simple integration
Let f be a continuous function. The first order differential equation y′ = f (t)
has general solution

y(t) =
∫

f (t)dt = F(t)+C

where F(t) is an antiderivative of f (t). The general solution depends on one
undetermined coefficient C.

We remark that not all first order differential equations are of the form y′ = f (t).
However, it is typical for first order differential equation that the general solution
depends on one undetermined coefficient, and we often need to compute indefinite
integrals to find the general solution. In Appendix A, we review indefinite integrals.

Problems

1.1. Show that y = t− t2 is a solution of the differential equation y′+y = 1− t− t2.

1.2. Determine all values of the constant r such that y = ert is a solution of the
differential equation 3y′+6y = 0.

1.3. Find the general solution of the differential equations:
a) y′ = 4t3 +1 b) ty′ = 2ln(t) c) y′+ t3 = t2 d) ety′ = t

1.4. Find the general solution of the differential equations y′′ = 12t + 6, and show
that it depends on two undetermined coefficients.

1.2 Modelling change using differential equations

To model how a variable y changes, we use a differential equation in the function
y(t). We write t for the independent variable and think of this variable as the time.
In this situation, we interpret the derivative

y′ = lim
∆ t→0

∆y
∆ t

= lim
h→0

y(t +h)− y(t)
h

as the rate of change in the variable y. A first order differential equation can often
be written in the form y′ = F(t,y), and this equation specifies the rate of change in
y = y(t) using the expression F(t,y). This is exactly what we mean by a model for
change. Let us show some examples.
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Example 1.1. Let y(t) denote the UK population (in millions) t years after 1980.
The UK population was 56.3 millons in 1980 and 58.9 millons in 2000. This gives
us the data points y(0) = 56.3 and y(20) = 58.9. In order to model the population
y = y(t) as a function of t, we need to make some assumption about the growth
of the population. Recall that the rate of change of the population y = y(t) is its
derivative

y′ = lim
∆ t→0

∆y
∆ t

= lim
h→0

y(t +h)− y(t)
h

where ∆y/∆ t is the average rate of change in the period [t, t + h]. For example, in
the period 1980-2000, the population increased by the average rate of change

y(20)− y(0)
20

=
58.9−56.3

20
= 0.13

or 0.13 millions/year. An assumption about the rate of change leads to a differen-
tial equation. One choice of model is the simple exponential growth model. In this
model, we assume that

y′ = r · y

for a constant r. In other words, the rate of change y′ = y′(t) is proportional to the
population y = y(t). It turns out that the general solution of this differential equation
is y(t) =C · ert , where C is an undetermined coefficient. You may verify that this is
a solution of y′ = ry, and we will show how to obtain the general solution of this
equation in Section 1.4 - 1.5. When we fit the general solution y(t) = C ert to the
given data points, we see that y(0) = 56.3 gives

56.3 =C · er·0 =C ⇒ C = 56.3

and that y(20) = 58.9 gives

58.9 = 56.3er·20 ⇒ e20r = 58.9/56.3 ⇒ r =
ln(58.9/56.3)

20
≈ 0.00226

This means that y(t) = 56.3e0.00226 t . The graph of the solution is shown below.
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y(t) = 56.3e0.00226 t
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According to this model, the UK population will reach 80 millions around the year
2135, since

56.3e0.00226 t = 80 ⇒ e0.00226 t = 80/56.3 ⇒ t =
ln(80/56.3)

0.00226
≈ 155

and t = 155 corresponds to the year 2135. In the long term, the population will
increase without bounds since

lim
t→∞

y(t) = lim
t→∞

56.3 · e0.00226 t = ∞

A differential equation in y(t), where t is time, gives a model for the changes
in the variable y = y(t). The derivative y′ is interpreted as the rate of change
in y. We need additional information about an initial state to determine the
solution y = y(t) completely.

Example 1.2. The simple exponential growth model is seldom a realistic model. In
most practical situation, the growth of y = y(t) would be restricted by the size of
y. For example, when y is a popluation, limited resources would keep the growth
rate y′ in the population from growing equally fast as y. Instead of the differential
equation y′ = ry, we could consider

y′ = r · y
(

1− y
K

)
This is called a logistic growth model. The positive constant K is called the carrying
capacity. We see that when y is much smaller than K, the factor 1−y/K is close to 1,
and y(t) will have close to simple exponential growth. However, when y grows large
and approaches K, the factor 1− y/K is close to zero, and y(t) will have close to
zero growth. The graph of the solution of the logistic growth model is shown below
(blue curve). The carrying capacity K (dotted) and the corresponding solution of the
simple exponential growth model (red curve) is shown for comparison.

t

y

y = K

y = y(t)

It turns out that the general solution of the logistic differential equation is
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y(t) = K · C ert

1+C ert

where C is an undetermined coefficient. It is possible to verify that this function is
a solution of y′ = ry(1−y/K), and we will show how to obtain the general solution
of this equation in Section 1.4. Notice that y(t)→ K when t→ ∞.

Problems

1.5. Show that y =Cert is a solution of the differential equation y′ = ry.

1.6. Let p= p(t) be the price of a product with demand function d = d(t) and supply
function s = s(t). We consider the differential equation

p′ = k(d− s)

for a positive constant k > 0. Explain the assumption on the rate of change in the
price p = p(t) that this differential equation expresses. What happens with the price
when there is a demand surplus? What happens when there is a supply surplus?

1.7. Find a particular solution of the logistic differential equation y′ = ry(1− y/K)
such that y(0) = 56.3 and y(20) = 58.9 assuming that the carrying capacity K = 80.
You may use that

y(t) = K · C ert

1+C ert

is the general solution of logistic differential equation. Compare the graphs by
sketching them in the same coordinate system (for instance using Wolfram Alpha).

1.3 First order differential equations

A first order differential equation in the unknown function y = y(t) is an equation
that involves expressions in t, y and y′. Many first order differential equations can
be written in the form

y′ = F(t,y)

for some function F , and we shall only consider first order differential equations of
this type. Examples of first order differential equations are

y′ =−y2et , y′ = ty−1, y′ =
y2−3t2y
t3−2yt

In Section 1.4 - 1.7, we shall explain methods for solving certain, but not all, first
order differential equations that can be written as y′ = F(t,y).

For a general first order differential equation y′=F(t,y), we expect that a general
solution y = y(t) exists and that it depends on one undetermined coefficient C. For
example, the differential equation y′ = 2t has general solution y(t) = t2 +C. If the
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value of y = y(t) at an initial time t = t0 is given, this is called an initial value for
the differential equation. In this case, we expect that there is a unique solution of
y′ = F(t,y) such that y(t0) = y0. For example, the differential equation y′ = 2t with
initial value y(0) = 1 has a unique solution y(t) = t2+1, since the condition y(0) = 1
in the general solution y(t) = t2 +C gives 1 = 02 +C, which we can solve for C
to determine that C = 1. This means that there is a unique solution with a graph
that passes through the point (t0,y0). The unique particular solution y(t) = t2 + 1
that passes through the point (t0,y0) = (0,1), corresponding to the initial condition
y(0) = 1, is shown below (blue curve).
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A first order differential equation y′ = F(t,y) with an initial condition y(t0) = y0
is called an initial value problem. It turns out that if F(t,y) is a “nice” function, then
the initial value problem y′ = F(t,y), y(t0) = y0 has a unique solution. To make the
notion of a “nice” function precise, we define that F(t,y) is a C1 function if it is
continuous and has continuous partial derivatives.

Existence and uniqueness of solutions
Let y′ = F(t,y), y(t0) = y0 be a first order initial value problem. If F is a C1

function in a neighbourhood around the point (t0,y0), then the initial value
problem has a unique solution y = y(t).

Problems

1.8. Solve the initial value problem y′ = 3t2 +6, y(1) = 1.

1.9. Solve the initial value problem y′ = 3
√

t, y(0) = 1.

1.10. Write the differential equation t2y′ − ty = t + y in the form y′ = F(t,y), if
possible. Is it solvable by simple integration?

1.11. Solve the initial value problem ty′ = 2ln(t), y(1) = 3.
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1.4 Separable differential equations

A first order differential equation is called separable if it can be written in the form

y′ = f (t) ·g(y)

for functions f (t), g(y). The cases where f (t) or g(y) are constants, are special cases
of separable differential equations. For example, the first order differential equation
y′ = f (t) solvable by simple integration, considered in Section 1.1, is a special case
of a separable differential equation with g(y) = 1.

In general, any separable differential equation can be solved by a technique called
separation of variables. When the equation is written in the form y′ = f (t) · g(y),
the solution method is given by the following steps:

y′ = f (t) ·g(y)
1

g(y)
· y′ = f (t)∫ 1

g(y)
· y′ dt =

∫
f (t)dt∫ 1

g(y)
dy =

∫
f (t)dt

We have divided both sides with g(y) and integrated both sides with respect to t.
To rewrite the integral on the left-hand side, we use the chain rule for the composite
function 1/g(y) with y= y(t), which can be written in the form dy= y′ dt. We obtain
two indefinite integrals that we can solve, at least in principle.

Separable differential equations
Let f ,g be continuous functions. The first order separable differential equation
y′ = f (t) ·g(y) has general solution given by∫ 1

g(y)
dy =

∫
f (t)dt

In particular, the general solution can be written as G(y)+C1 = F(t)+C2 in
implicit form, and rewritten as G(y) = F(t)+K with K =C2−C1. It depends
on one undetermined coefficient K.

When we use this method, we obtain the general solution as G(y) = F(t)+K. It
is called an implicit form of the solution. We prefer to solve this equation for y, to
obtain a solution y = y(t) in explicit form, if possible.

To illustrate the method, consider the differential equation y′ = 2y as an example.
Using the factorization 2y = 2 · y, with f (t) = 2 and g(y) = y, we obtain
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y′ = 2 · y
1
y
· y′ = 2∫ 1

y
· y′ dt =

∫
2dt∫ 1

y
dy =

∫
2dt

Then we have to compute these integrals. The integrals are in this case not difficult
to compute, and we get∫ 1

y
dy = ln |y|+C1,

∫
2dt = 2t +C2

and therefore ln |y|+C1 = 2t +C2 is the general solution in implicit form. We solve
for y to get it in explicit form y = y(t). We get

ln |y|+C1 = 2t +C2

ln |y|= 2t +C2−C1

|y|= e2t+C2−C1 = e2t · eC2−C1

y =±eC2−C1 · e2t = K e2t

with K = ±eC2−C1 , which is an undetermined coefficient. The general solution of
the differential equation in explicit form is therefore y(t) = K e2t .

Problems

1.12. Find the general solution of the differential equation y′ = ry when r is a given
constant. This is the differential equation in the simple exponential growth model
considered in Section 1.2.

1.13. Determine whether the differential equations are separable or not, and find the
general solution of the separable equations.
a) yy′ = t b) y′+ y = et c) eyy′ = t +1 d) ty′+ y2 = 1 e) y′− ln(t) = 1

1.14. Find the general solution of the differential equation y′ = ry(1− y/K) when
r,K are given constants with K > 0. This is the differential equation in the logistic
growth model considered in Section 1.2.
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1.5 Linear first order differential equation

A first order differential equation y′ = F(t,y) is linear if F(t,y) is linear in y. More
precisely, the differential equation is linear if and only if it can be written in the form

y′+a(t) · y = b(t) ⇔ y′ = b(t)−a(t) · y

for functions a(t), b(t). The form y′+ a(t) · y = b(t) is called the standard form
of linear first order differential equations, and it is the one we use when we solve
these equations. The form y′ = b(t)−a(t) ·y is included to show that it has the form
y′ = F(t,y) and that the function F(t,y) is linear in y.

Let us postpone the general case for the moment, and start by considering the
special case where a(t) and b(t) are constants. In this case, we write the equation as

y′+ay = b

where a = a(t) and b = b(t) are constants. If a = 0, then y′ = b is easy to solve by
simple integration, and we get general solution y = bt +C. When a 6= 0, we notice
that the equation is separable since it can be written

y′+ay = b ⇔ y′ = b−ay = 1 · (b−ay)

with factorization given by f (t) = 1 and g(y) = b−ay. By separation of variables,
this gives ∫ 1

b−ay
dy =

∫
1dt

The first integral is∫ 1
b−ay

dy =
∫ 1

u
· du
(−a)

=
1
−a
· ln |u|+C1 =−

1
a

ln |b−ay|+C1

using the substitution u = b−ay with du =−a ·dy since u′ =−a. This gives

−1
a

ln |b−ay|+C1 = t +C2

ln |b−ay|=−a(t +C2−C1) =−at−a(C2−C1)

b−ay =±e−at−a(C2−C1) = Ke−at

ay = b−Ke−at

y =
b
a
− K

a
e−at =

b
a
+C e−at

with K = ±e−a(C2−C1) and C = −K/a. Therefore, y = b/a+C e−at is the general
solution of y′+ay = b when a,b are constants with a 6= 0.

This a very useful special case. For instance, the differential equation y′ = ry of
the simple exponential growth model can be solved using the formula above, since
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y′ = ry can be written y′− ry = 0 with a = −r and b = 0. This gives the solution
y = b/a+Ce−at = C ert . It also illustrates the fact that some first order differential
equations are both separable and linear.

In general, linear first order differential equations can be solved by a technique
called integrating factor. We choose an integrating factor u = u(t) and multiply the
differential equation with this factor. This gives

y′+a(t) · y = b(t)

uy′+ua(t) · y = ub(t)

We want to choose u = u(t) such that the left-hand side of the above equation is
(uy)′ = uy′+u′y. For this to be the case, we see that we must choose u = u(t) such
that u′ = a(t)u. This is a separable differential equation in u = u(t) that we can solve
by separation of variables

u′ = a(t) ·u
1
u
·u′ = a(t)∫ 1

u
du =

∫
a(t)dt

ln |u|=
∫

a(t)dt

and we therefore choose the integrating factor u = u(t) to be given by

u(t) = e
∫

a(t)dt

We know that this choice for u = u(t) makes uy′+ ua(t) · y equal to (uy)′. We use
this to solve the equation:

y′+a(t) · y = b(t)

uy′+ua(t) · y = ub(t)

(uy)′ = u(t) ·b(t)

uy =
∫

u(t) ·b(t)dt

y =
1
u

∫
u(t) ·b(t)dt =

1
u(t)

∫
u(t) ·b(t)dt

Notice that u = u(t), and we switch between using u and u(t) above. Also note
that the formula for the integrating factor gives an undetermined coefficient. For
instance, in the differential equation y′+ y = et , the formula gives∫

a(t)dt =
∫

1dt = t +C ⇒ u = e
∫

a(t)dt = et+c

We choose the integrating factor as simple as possible. In this case, we choose u= et .
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Linear first order differential equations
Let f ,g be continuous functions. The linear first order differential equation
y′+a(t)y = b(t) has general solution given by

y =
1

u(t)
·
∫

u(t) ·b(t)dt

where u(t) = e
∫

a(t)dt is an integrating factor.

To illustrate the method, consider the differential equation y′ − 2y = 4t as an
example. In this case, the differential equation is first order linear in standard form,
with a(t) =−2 (a constant) and b(t) = 4t. We first compute an integrating factor:∫

a(t)dt =
∫
−2dt =−2t +C ⇔ u = e−2t+C = e−2t

We have chosen the integrating factor u = e−2t with C = 0, as any value of C would
work. This gives

y′−2y = 4t

e−2ty′−2e−2t · y = 4te−2t

(e−2ty)′ = 4te−2t

e−2ty =
∫

4te−2t dt

y = e2t
∫

4te−2t dt

Notice that the step where we simplify the left-hand side to (e−2ty)′ follows from
the construction of u(t); we have chosen u such that this would be the case. Finally,
we have to solve the integral on the right-hand side using integration by parts∫

4te−2t dt = 4t ·
(

1
(−2)

e−2t
)
−
∫

4 ·
(

1
(−2)

e−2t
)

dt

=−2te−2t +
∫

2e−2t d f t

=−2te−2t − e−2t +C

with u′ = e−2t and v = 4t, which gives u =−e−2t/2 and v′ = 4. The general solution
of the differential equation is therefore

y = e2t ·
(
−2te−2t − e−2t +C

)
=−2t−1+C e2t =C e2t −2t−1

with undetermined coefficient C.
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Problems

1.15. Show that the differential equation y′ = ry is both separable and linear when
r is a given constant. Find the integrating factor, and use it to solve the differential
equation.

1.16. Determine whether the differential equations are linear or not, and find the
general solution of the linear equations.
a) y′+y = et b) yy′ = t c) y′ = 2t +y d) t2y′+ ln(t)y = ln(t) e) y′−2ty = 2t

1.6 Superposition principle

In this section, we explain the superposition principle and how to use it to solve
linear first order differential equations. The principle gives a decomposition of the
general solution y = y(t) into two components

y(t) = yh(t)+ yp(t)

and a description of the two components that give an alternative method for solving
linear first order differential equations. In many cases, this method is easier to use
than integrating factors.

We shall introduce operators to explain the superposition principle. We think
of an operator as a “function of functions”, which takes a function as input and
produces a new function as output. In concrete terms, the operators that we use in
linear first order differential equations are the first order differential operators of the
form D = p(t)d/dt +q(t). It operates on an input function y = y(t) by

D(y) =
(

p(t)
d
dt

+q(t)
)

y = p(t)y′+q(t)y

and is called a differential operator since it involves differentiating the input function
y = y(t).

Any linear first order differential equation y′+a(t)y = b(t) can be written in the
form D(y) = b(t), where y = y(t) is the unknown function, and D = d/dt +a(t) is a
differential operator, and we interpret a solution of the differential equation to be an
input function y = y(t) such that the output function D(y) is b(t). For example, we
write the differential equation y′+y = et as D(y) = et with D = d/dt +1. Using the
(random) input functions y(t) = t, t2, et , we get

D(t) = 1+ t, D(t2) = 2t + t2, D(et) = et + et = 2et

and neither of these input functions are solutions of the linear differential equation
since the requirement is that D(y) is et .
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In general, we say that an operator D is linear if D(y1+y2) = D(y1)+D(y2) and
D(cy) = cD(y) for all functions y1 = y1(t), y2 = y2(t) and all constants c. It is not
difficult to see that any first order differential operator p(t)d/dt +q(t) is linear. To
check the two requirement, we compute

D(y1 + y2) = p(t) · (y1 + y2)
′+q(t) · (y1 + y2)

= p(t) · y′1 + p(t) · y′2 +q(t)y1 +q(t)y2 = D(y1)+D(y2)

D(cy) = p(t) · (cy)′+q(t) · (cy) = cp(t)y′+ cq(t)y = cD(y)

The real reason why y′+ a(t)y = b(t) is called a linear differential equation is of
course that it can be written as D(y) = b(t) for a linear operator D.

First order differential operators
Any first order differential operator D = p(t)d/dt +q(t) is linear.

A linear first order differential equation y′+a(t)y = b(t) is called homogeneous
if b(t) = 0, and inhomogeneous otherwise. We define yh(t) to be the general solution
of the homogeneous equation

y′+a(t)y = 0

obtained by replacing b(t) with zero. If a(t) = a is constant, it is easy to find yh. We
can use the formula in the case y′+ay = b from Section 1.5, which gives

yh(t) = b/a+Ce−at =Ce−at

We say that the equation has constant coefficients when a(t) = a is a constant. If
a(t) is non-constant, we must use an integrating factor to find yh(t).

We call yp = yp(t) a particular solution of y′+ a(t)y = b(t) if it is a solution.
We can often find yp by considering special cases. For example, in the differential
equation t2y′+ ln(t)y = ln(t), we guess that a constant yp = A could be a solution.
To verify this and find A, we substitute y(t) = A and y′(t) = 0 into the differential
equation, which gives ln(t) ·A = ln(t), or A = 1. Therefore, yp(t) = 1 is a particular
solution in this case.

The differential equation y′+ a(t)y = b(t) can be written as D(y) = b(t). If we
have found a particular solution yp of D(y) = b(t), and the general solution yh of the
homogeneous equation D(y)= 0, then y= yh+yp is clearly a solution of D(y)= b(t)
since

D(y) = D(yh + yp) = D(yh)+D(yp) = 0+b(t) = b(t)

by definition. It also follows that any solution of the equation must be of the form
y = yh + yp, since for any solution y we have

D(y− yp) = D(y)−D(yp) = b(t)−b(t) = 0

and therefore that y− yp is a homogeneous solution, or y− yp = yh, which gives
y = yh + yp. This proves the superposition principle:
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Superposition principle
The general solution of the linear differential equation y′+a(t)y= b(t) can be
written as y= yh+yp, where the yh is the general solution of the homogeneous
equation y′+a(t)y = 0, and yp is any particular solution of y′+a(t)y = b(t).

To illustrate the usefulness of the superposition principle, let us use it to solve the
differential equation y′+y = et . By the superposition principle, the general solution
is y= yh+yp. The homogeneous solution is easy to find, since a(t) = 1 is a constant:

y′+ y = 0 ⇒ y =
b
a
+Ce−at =Ce−t

Therefore yh =Ce−t . To find yp, we just need one particular solution of y′+ y = et .
We try y = et , which gives D(y) = et +et = 2et with D = d/dt +1. The first attempt
y = et is not a solution, but since D(et/2) = D(et)/2 = 2et/2 = et , it follows that
yp = et/2 is a particular solution. The general solution is therefore

y = yh + yp =Ce−t +
1
2

et

by the superposition principle.

Problems

1.17. Use the superposition principle to find the general solution of the linear first
order differential equations:
a) y′+3y = 4et b) y′− y = t c) y′ = 2t + y d) 6y′−18y = 12t

1.18. Use the superposition principle to find the general solution of the linear first
order differential equation t2y′+ ln(t)y = ln(t).

1.19. Solve the initial value problem ty′+2y = t, y(1) = 1.

1.7 Exact differential equations

A first order differential equation y′ = F(t,y) is exact if it can be written in the form

∂h
∂ t

+
∂h
∂y
· y′ = 0

for a differentiable function h = h(t,y). In this case, we call h′t +h′y · y′ = 0 an exact
form of the differential equation. It is simple to write any first order differential
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equation y′ = F(t,y) as p(t,y)+q(t,y) ·y′ = 0. However, the requirement that p= h′t
and q = h′y for a common function h = h(t,y) is restrictive and must be checked to
see whether the differential equation is in exact form.

For example, the differential equation y′ = 2y, which is both separable and linear,
can be written in the form p(t,y)+q(t,y) ·y′ = 0 in many different ways. Let us first
write it as

−2y+1 · y′ = 0

with p(t,y) = −2y and q(t,y) = 1. There is no function h(t,y) that satisfies the
requirement that h′t = −2y and h′y = 1. To see this, note that any function h(t,y)
satisfying h′y = 1 must have the form h(t,y) = y+φ(t) for some function φ(t) that
is constant in y. Using this, we see that h′t = 0+φ ′(t) = φ ′(t). Since this derivative
is constant in y, it cannot equal 2y for any choice of the function φ .

Let us instead take advantage of the fact that the differential equation y′ = 2y is
separable, and re-write it as

1
y
· y′ = 2 ⇐⇒ −2+

1
y
· y′ = 0

with p(t,y) =−2 and q(t,y) = 1/y. It we choose h(t,y) =−2t + ln |y|, we see that
h′t =−2 = p and h′y = 1/y = q. Hence the differential equation y′ = 2y is exact, and
we obtained an exact form by multiplying the equation −2y+ y′ = 0 with 1/y.

We could also take advantage of the fact that the differential equation y′ = 2y is
linear. Writing it as y′−2y = 0, we see that its integrating factor is u = e−2t . After
multiplication with u, we can re-write the differential equation as

y′−2y = 0 ⇐⇒ −2ye−2t + e−2t · y′ = 0

with p(t,y) = −2ye−2t and q(t,y) = e−2t . It we choose h(t,y) = ye−2t , we see that
h′t = −2ye−2t = p and h′y = e−2t = q. Hence the differential equation is exact, and
we obtained an exact form by multiplying it with the integrating factor e−2t .

Separable and linear differential equations are exact
Any first order differential equation that is either separable or linear, is also
exact.

In general, we use the following method for solving exact differential equations:
First, we find a function h = h(t,y) such that the differential equation can be written
in the form

∂h
∂ t

+
∂h
∂y
· y′ = 0

This is the hard part. Then, we recall that the solution of the differential equation
is supposed to be a function y = y(t). When we take this into consideration, and
compute the derivative of h = h(t,y) = h(t,y(t)) with respect to t, we get
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dh
dt

=
∂h
∂ t

+
∂h
∂y
· dy

dt
=

∂h
∂ t

+
∂h
∂y
· y′

This is sometimes called the total derivative of h. We can think of the two terms
as the direct change in h as a result as a change in t, and the indirect change as a
result of a change in y. The total derivative is equal to the left-hand side of the exact
differential equation, which therefore simplifies to

∂h
∂ t

+
∂h
∂y
· y′ = 0 ⇔ dh

dt
= 0

This means that h(t,y) is a constant. Therefore, the general solution of the exact
differential equation is given by h(t,y) =C.

Exact differential equations
Let h = h(t,y) be a differentiable function. The exact differential equation

∂h
∂ t

+
∂h
∂y
· y′ = 0

has a general solution that can be written as h(t,y) =C in implicit form.

Let us illustrate the method with an example, the first order differential equation
(2t + y)+ (t− 4y)y′ = 0. This equation is neither separable nor linear. We can see
this by transforming it to the form y′ = F(t,y), which gives

(2t + y)+(t−4y)y′ = 0 ⇔ y′ =−2t + y
t−4y

We shall attempt to solve this differential equation as an exact equation, and we
therefore try to write the differential equation

(2t + y)+(t−4y)y′ = 0

in the form h′t + h′y · y′ = 0 for a function h = h(t,y). The function h must have the
properties that

h′t = 2t + y and h′y = t−4y

Any function h that satisfy the first condition, must have the form h = t2 +yt +φ(y)
for a function φ(y) that is constant in t. We see this by using the inverse operation
of partial derivation with respect to t. We can think of this inverse operation as an
integral ∫

(2t + y)dt = t2 + yt +C = t2 + yt +φ(y)

where we consider y to be constant. We interpret the integration constant C as
any expression φ(y) that is constant in the integration variable t, since this gives
(φ(y))′t = 0. After finding the functions h(t,y) = t2 +yt +φ(y) that satisfies the first
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condition, we check if any of these functions also satisfy the second condition by
computing

h′y =
(
t2 + yt +φ(y)

)′
y = 0+ t +φ

′(y) = t +φ
′(y)

This should equal q(t,y) = t−4y, and this condition means that φ ′(y) =−4y, or that
φ(y) = −2y2 +K. It follows that the function h(t,y) = t2 + yt− 2y2 satisfies both
conditions. Therefore, the equation is exact with implicit solution

t2 + yt−2y2 =C

Notice that it is enough to find one function h(t,y) that satisfy the two conditions;
we have used h(t,y) = t2 + ty−2y2 +K with K = 0. To find an explicit solution, we
solve the implicit equation for y, and get

−2y2 + ty+(t2−C) = 0 ⇒ y =
−t±

√
t2−4(−2)(t2−C)

2(−2)
=

t±
√

9t2−8C
4

using the formula for quadratic equations. This is the general solution of the exact
differential equation in explicit form.

Criterion for exactness
Let p(t,y), q(t,y) be C1 functions, and consider the first order differential
equation p(t,y)+q(t,y) ·y′= 0. There is a function h= h(t,y) such that h′t = p
and h′y = q if and only if the condition

∂ p
∂y

=
∂q
∂ t

holds. In this case, the differential equations is exact and p(t,y)+q(t,y) ·y′= 0
is an exact form.

Notice that if we use the exactness criterion and find that it is satisfied, we just
know that the function h = h(t,y) exists; we still have to find h in order to solve the
exact differential equation. If the exactness criterion is not satisfied, it just means
that p(t,y)+q(t,y) ·y′ = 0 is not in exact form; it could still be possible to transform
it to an exact form by multiplying it with a factor (such as an integrating factor).

It is not difficult to explain why an exact differential equation satisfy the criterion:
If p = h′t and q = h′y for a common function h = h(t,y), then we have that

p′y = h′′ty, q′t = h′′yt

and we know that the Hessian matrix of h is symmetric so that h′′ty = h′′yt . To prove
the opposite implication, that any differential equation that satisfy the criterion must
be exact, is much more difficult.
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Problems

1.20. Solve the differential equation 1+ 2ty2 + 2t2y · y′ = 0, and find all solutions
that satisfy the initial condition y(1) =−1.

1.21. Solve the following differential equations:
a) 2t− y+(2y− t)y′ = 0 b) yet + et · y′ = 0 c) ty2 + y+(t2y+ t)y′ = 0

1.22. Show that any separable differential equation is exact.

1.23. Show that any first order linear differential equation is exact.

1.8 Equilibrium states and stability

A first order differential equation y′ = F(t,y) is called autonomous if the right-hand
side F(t,y) is independent of the variable t. In other words, autonomous first order
differential equations can be written y′ = F(y). An example of an autonomous first
order differential equation is the linear equation y′+ay= b, where a,b are constants.
This equation can be written as y′ = b−ay, where the right-hand side F(y) = b−ay
is independent of t.

Equilibrium states. Let y′ = F(y) be an autonomous differential equation, and let
ye be a number. If F(ye) = 0, then we say that y = ye is an equilibrium state for
y′ = F(y). If this is the case, then the constant function y(t) = ye is a solution of
the differential equation y′ = F(y). This follows from the facts that y′ = 0 for the
constant function y(t) = ye, and that F(y) = 0 at an equilibrium state y = ye.

The particular solution of the differential equation y′=F(y) with initial condition
y(0) = ye for an equilibrium state ye must be the constant solution y(t) = ye. In other
words, if we start at the equilibrium state, we will stay there for all time. This is the
reason for the name equilibrium state.

Notice that it is often much easier to compute equilibrium states than to solve
the differential equation. For example, the differential equation y′+ ay = b can be
written y′ = b−ay, and we can find equilibrium states by solving the equation

F(y) = b−ay = 0 ⇒ ye =
b
a

Compare this with the general solution y(t) = Ce−at + b/a of y′+ ay = b found in
Section 1.5. We notice that if a > 0, then the limit

y = lim
t→∞

y(t) = lim
t→∞

(
Ce−at +

b
a

)
=

b
a

is the equilibrium state of this equation. If a < 0, then the limit above does not exist.
Another example is the logistic differential equation y′ = ry(1− y/K), which is

autonomous with F(y) = ry(1− y/K). The equilibrium states are given by
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F(y) = ry
(

1− y
K

)
= 0 ⇒ y = 0 or y = K

Therefore, this differential equation has two equilibrium states ye = 0 and ye = K.
We may compare this with the general solution

y(t) = K · C ert

1+C ert

of y′ = ry(1− y/K) found in Section 1.4. Notice that the limit

y = lim
t→∞

y(t) = lim
t→∞

(
K · C ert

1+C ert

)
=

{
K, r > 0
0, r < 0

is one of the two equilibrium states of this equation.

Convergence to equilibrium states
Let y′ = F(y) be an autonomous first order differential equation with y = y(t)
as a particular solution. If the limit

y = lim
t→∞

y(t)

exists (and is finite), then y = y is a an equilibrium state for y′ = F(y).

Stability. Let y′ = F(y) be an autonomous first order differential equation with an
equilibrium state y = ye. We consider the initial value problem y′ = F(y), y(0) = y0
when y0 is close to the equilibrium state ye but y0 6= ye. If the solution y(t) of the
initial value problem moves away from ye as t increases, then the equilibrium y = ye
is called unstable. If it moves towards ye, or at least doesn’t move further away from
it, then the equilibrium y = ye is called stable.

We consider the linear differential equation y′+ay = b as an example. We have
seen that it can be written y′ = b−ay with F(y) = b−ay, and if a 6= 0, then it has
one equilibrium state ye = b/a. Let us determine the stability of ye = b/a.

−2 −1 1 2 3 4

1

2

3

4

y

y′

y′ = b−ay

−2 −1 1 2 3 4

1

2

3

4

t

y

y(t) = b/a+Ce−at

We first consider the special case a= 1 and b= 2, and look at the diagrams shown
above. The diagram on the left shows the plot of y′ = F(y) in the yy′-plane. This is
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called a phase diagram. The intersection with the horisontal axis is the equilibrium
state ye = b/a= 2. The diagram on the right is the solution curve y(t) = b/a+Ce−at

drawn in the ty-plane for various initial values y0 6= ye = 2. The equilibrium state is
shown as the horisontal blue line y = ye = 2.

We see that the equilibrium state y = ye = 2 is stable, since the solution curves in
the right-hand side diagram move towards y = 2 as t increases when the initial state
y0 is close to ye = 2 but y0 6= ye. We can also see this from the phase diagram on
the left-hand side: At points to the right of the equilibrium state y = 2, the graph of
y′ = F(y) lies under the horisontal axis, meaning that y′ < 0 and that y = y(t) will
decrease. At points to the left of y= 2, the graph of y′ = F(y) lies over the horisontal
axis, meaning that y′ > 0 and that y = y(t) will increase. In either case, y will move
towards the equilibrium state y = 2 when t increases.

Using the same methods, we analyse the equilibrium state y = b/a of y′ = b−ay
when a,b are general constants with a 6= 0. We see that ye = b/a is stable when
a > 0 and unstable when a < 0. In fact, it turns out that the slope of the tangent line
of y′ = F(y) at the equilibrium state y = ye determines the stability:

Stability Theorem
Let y′ = F(y) be an autonomous first order differential equation with an equi-
librium state y = ye. Then we have the following:

1. If F ′(ye)< 0, then y = ye is a stable equilibrium state.
2. If F ′(ye)> 0, then y = ye is an unstable equilibrium state.

Stability of an equilibrium state y = ye is a local property, since it requires that
y(t) moves toward ye when y0 is close to ye. We say that an equilibrium state y = ye
is globally asymptotically stable if the particular solution y = y(t) of the initial value
problem y′ = F(y), y(0) = y0 moves towards ye as t increases for all values of y0.

For example, consider the linear differential equation y′ = b− ay. We already
know that ye = b/a is stable when a > 0. But since the general solution is given by
y(t) = b/a+Ce−at with C = y0−b/a, it follows that

lim
t→∞

y(t) = lim
t→∞

(
b
a
+

(
y0−

b
a

)
e−at

)
=

b
a

for all values of y0 when a > 0. This means that the equilibrium ye = b/a is globally
asymptotically stable when a > 0.

Problems

1.24. Determine all equilibrium states of the differential equation y′ = 1− y2, and
determine their stability. If there are any stable equilibrium points, check if they are
globally asymptotically stable.
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1.25. Consider the differential equation p′ = k(d−s), where p = p(t) is the price of
a good with linear supply and demand functions

d = a−bp

s = c+d p

We assume that a,b,c,d,k > 0 are positive constants. Find all equilibrium states for
the price p, and determine their stability.

1.9 Second order differential equations

A second order differential equation contains the second derivative y′′, and can often
be written in the form y′′ = F(t,y,y′) for some function F (we shall only consider
second order differential equations of this type). A simple example is

y′′ = 12t

We can solve this second order differential equation by simple integration in two
steps. We get

y′ =
∫

12t dt = 6t2 +C ⇒ y =
∫
(6t2 +C)dt = 2t3 +Ct +D

We notice that the general solution depends on two undetermined coefficients C,D.
This is typical for second order differential equations, and implies that we need two
initial conditions to determine a unique solution.

For example, the initial value problem y′′ = 12, y(0) = 1, y′(0) = 2 has general
solution y(t) = 2t3 +Ct +D, with y′(t) = 6t2 +C. The condition y(0) = 1 gives
1 = 2 ·03 +C ·0+D, or D = 1, and the condition y′(0) = 2 gives 2 = 6 ·02 +C, or
C = 2. Therefore, the particular solution is y(t) = 2t3 +2t +1, and it is unique.

Existence and uniqueness of solutions
Let y′′ = F(t,y,y′), y(t0) = b,y′(t0) = c be a second order initial value prob-
lem. If F is a C1 function in a neighbourhood around the point (t0,b,c), then
the initial value problem has a unique solution y = y(t).

Problems

1.26. Solve the differential equation y′′ = 0.
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1.27. Solve the differential equation y′′ = et − e−t , and find all solutions that satisfy
the initial conditions y(0) =−1 and y′(0) = 1.

1.28. Solve the differential equation y′′ = 1− y′. Hint: Rewrite the equation as a
differential equation in the variable z = y′.

1.10 Linear second order differential equations.

A second order differential equation y′′ = F(t,y,y′) is linear if it can be written in
the form

y′′+a(t)y′+b(t)y = h(t)

for functions a(t), b(t), h(t). We may consider the left-hand side as D(y), where D
is the second order differential operator

D =
d2

dt2 +a(t)
d
dt

+b(t)

written using Leibniz’ notation dy/dt = y′ and d2y/dt2 = y′′. It operates on an input
function y = y(t) as

D(y) =
(

d2

dt2 +a(t)
d
dt

+b(t)
)

y = y′′+a(t)y′+b(t)y

One may show that any second order differential operator D is a linear, just as first
order differential operators were shown to be linear in Section 1.6, and therefore the
superposition principle applies to linear second order differential equations.

Superposition principle for linear second order differential equations
The general solution of the differential equation y′′+a(t)y′+b(t)y= h(t) can
be written as y = yh+yp, where yh is the general solution of the homogeneous
equation y′′+a(t)y′+b(t)y= 0, and yp is a particular solution of the equation
y′′+a(t)y′+b(t)y = h(t).

Let us consider the linear second order differential equation y′′+ 3y′+ 2y = 10
as an example. By the superposition principle, its general solution is y = yh + yp.
Therefore, it is enough to find the general homogeneous solution yh and a particular
solution yp to solve this differential equation. It turns out that yh =C1 ·e−t +C2 ·e−2t

and that yp = 5 in this case, and we shall explain in detail how to find yh and yp
below. It follows that

y = yh + yp =C1 · e−t +C2 · e−2t +5

is the general solution of y′′+3y′+2y = 10.
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The homogenous case. A homogeneous linear second order differential equation
y′′+ a(t)y′+ b(t)y = 0 has constant coefficients if a(t) = a and b(t) = b are con-
stants. In this case, we write the differential equation as

y′′+ay′+by = 0

We shall explain the solution method for this type of differential equation. It is based
on the idea that y = ert is a solution of y′′+ay′+by = 0 for certain values of r, and
that we can determine those values of r by substituting y = ert in the differential
equation, using that y′ = rert and y′′ = r2ert . The left-hand side becomes

y′′+ay′+by = r2ert +a(rert)+b(ert) = ert(r2 +ar+b)

Therefore, y = ert is a solution of the differential equation y′′+ay′+by = 0 if and
only if r2 +ar+b = 0. This is the characteristic equation, and it has solutions

r =
−a±

√
a2−4b

2

The number of solutions depends on the sign of the discriminant ∆ = a2−4b.

Characteristic equation
Let y′′ + ay′ + by = 0 be a linear second order differential equation that is
homogeneous with constant coefficients. The function y(t) = ert is a solution
if and only if r is a root in the characteristic equation r2 +ar+b = 0.

When ∆ > 0, we have two distinct (real) roots r 6= s, and therefore y1 = ert and
y2 = est are distinct solutions. Since the differential operator D is linear, it follows
that any linear combination

y(t) =C1 · y1 +C2 · y2 =C1 · ert +C2 · est

is a solution. This is the general solution, with two undetermined coefficients.
When ∆ = 0, we have a double root r =−a/2, and therefore y1 = ert is a solution.

One may show that also y2 = t · ert is a solution. Since the differential operator D is
linear, it follows that any linear combination

y(t) =C1 · y1 +C2 · y2 =C1 · ert +C2 · tert = (C1 +C2 t)ert

is a solution. This is the general solution, with two undetermined coefficients.
When ∆ < 0, there are no real roots of the characteristic equation. But notice that

formally, we can write the solutions

r =
−a±

√
a2−4b

2
=
−a
2
±
√

4b−a2
√
−1

2
= α +β ·

√
−1
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with α = −a/2 and β =
√

4b−a2/2 since 4b− a2 > 0. The general solution of
y′′+ay′+by = 0 is in this case given by

y(t) = eα t · (C1 cos(β t)+C2 sin(β t))

with two undetermined coefficients.

General solution in the homogeneous case
Let y′′ + ay′ + by = 0 be a linear second order differential equation that is
homogeneous with constant coefficients. The general solution is given by

∆ > 0 : y(t) =C1ert +C2est

∆ = 0 : y(t) = (C1 +C2t)er·t

∆ < 0 : y(t) = eα·t(C1 cos(β t)+C2 sin(β t)

As an example, let us consider the homogeneous equation y′′+3y′+2y = 0 with
constant coefficients. Its characteristic equation is

r2 +3r+2 = 0 ⇒ r =
−3±

√
9−8

2
=
−3±1

2

and there are two distinct characteristic roots r =−1 and r =−2. This corresponds
to the case ∆ > 0, and the general solution of y′′+3y′+2y = 0 is therefore

y(t) =C1 · e−t +C2 · e−2t

The linear second order differential equation y′′+3y′+2y = 10 that we considered
earlier in this section therefore has general homogeneous solution

yh =C1 · e−t +C2 · e−2t

Another example is y′′+4y′+4y = 0. It has characteristic equation r2 +4r+4 = 0,
with double root r =−2. In this case, the general solution of the differential equation
is y(t) = (C1 +C2t)e−2t .

We remark that if the homogeneous linear second order differential equation
y′′+ a(t)y′+ b(t)y = 0 does not have constant coefficients, then the characteristic
equation cannot be used to find the general solution.

Particular solutions. It is usually much simpler to find a particular solution of
a differential equation than to find the general solution by solving the equation.
A useful technique is to make an assumption about the form of the solution, or
to “guess” a solution y = y(t), and then substitute this form into the differential
equation to check whether any function of the chosen form is a solution. This is
called the method of undetermined coefficients.
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For example, to find a particular solution of y′′+3y′+2y = 10, we may “guess”
that it has a constant solution y = A. To check whether or not this satisfies the equa-
tion for any value of A, we assume that y = A, compute y′ = y′′ = 0, and substitute
the values of y, y′ and y′′ into the differential equation y′′+3y′+2y = 10. This gives
2A = 10, or A = 5. This means that y = 5 is a constant solution. We therefore say
that yp = 5 is a particular solution of y′′+3y′+2y = 10.

Notice that it is a good idea to “guess” a solution y = y(t) that depends on one or
more parameters, the undetermined coefficients. This means that we guess a form
of the solution (for example a constant solution in the example above), rather than
a specific solution. Also notice that it may happen that there are no solutions of the
differential equation of the form we have guessed. If this happens, we must change
our assumptions.

We consider the linear second order differential equation y′′+ 7y′+ 12y = t as
an example. If we try to guess a constant solution y = A, we get 12A = t when we
substitute into the differential equation, and this has no solutions. Remember that A
is assumed to be a constant. We notice that the problem is the non-constant function
t on the right-hand side, and try to guess a linear form y=At for a constant A instead.
To substitute this into the diffential equation, we compute y′ = A and y′′ = 0. This
gives

0+7(A)+12(At) = t ⇒ (12A)t +(7A) = t

We compare coefficients of the linear functions on the left and right side of the equa-
tion, and get 12A = 1 and 7A = 0. There is no solution for A, and this means that
the differential equation does not have any particular solutions of the form yp = At
either. We must change our assumption, and this time we notice that the problem is
that the equation (12A)t +(7A) = t has a constant term as well as the degree one
term. This time, we therefore assume that the solution y = At +B is a linear expres-
sion. We compute y′ = A and y′′ = 0, and substitute into the differential equation:

0+7(A)+12(At +B) = t ⇒ (12A)t +(7A+12B) = t

Comparing coefficients, this gives 12A = 1 and 7A+ 12B = 0. The first equation
gives A = 1/12, and the second gives 12B = −7A = −7/12, or B = −7/144. We
find a solution for A and B, and this means that there is a particular solution of the
chosen form,

yp = At +B =
7

12
· t− 7

144
We know that y′′+7y′+12y= t has general solution y= yh+yp by the superposition
principle. Since y′′+7y′+12 = 0 has characteristic equation r2 +7r+12 = 0, with
roots r =−3 and r =−4, the homogeneous solution is

yh =C1e−3t +C2e−4t

Therefore, the general solution of y′′+7y′+12y = t is given by

y = yh + yp =C1e−3t +C2e−4t +
7

12
· t− 7

144
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From this example, we notice that it is a good idea to chose y = y(t) of the same
form as the right-hand side of the linear second order differential equation: Since
the right-hand side is a linear expression t, we guess y = y(t) is a linear expression
y = At +B.

Method of undetermined coefficients
To find a particular solution of a linear second order differential equation
y′′+ ay′+ by = h(t), we guess a solution y = y(t) and substitute it into the
differential equation. We choose y = y(t) such that

1. y = y(t) depends on one or more undetermined coefficients
2. y = y(t) has the same form as h(t), h′(t) and h′′(t)

If the initial guess y = y(t) does not work, we try to replace y(t) with t · y(t),
and repeat the process until we find a particular solution.

Let us reconsider the differential equation y′′+7y′+12y = t. We first look at the
right-hand side h(t) = t and its derivatives h′(t) = 1 and h′′(t) = 0, and then choose
y = At +B. This is an expression with undetermined coefficients that has the same
form as h, h′ and h′′, in the sense that all these functions are special cases of a linear
function At +B. This means that we find a guess y = At +B that gives particular
solutions when we substitute it into the differential equation, and we avoid trying
y = A and y = At.

Problems

1.29. Solve the initial value problem y′′+ y′−2y = 4t, y(0) = 1, y′(0) = 0.

1.30. Solve the following linear second order differential equations:
a) y′′−4y = t +1 b) y′′+3y′ = e−t c) y′′+5y′−6y = t2

1.31. Solve the differential equation y′′+3y′−4y = 2et .

1.32. Show that if y′′+ay′+by = 0 has a characteristic equation with double root r,
then y = tert is a solution of the differential equation.

1.33. Solve the linear first order differential equation y′− 4y = tet , first using the
superposition principle, the characteristic equation and the method of undetermined
coefficients, and then using the integrating factor. Compare the methods.

1.34. Prove that the following second order differential operator is linear:

D =
d2

dt2 +a(t)
d
dt

+b(t)





Chapter 2
Systems of Differential Equations

2.1 Introduction to systems of differential equations

Let y1(t),y2(t), . . . ,yn(t) be functions in one variable t, where t represents time. A
first order differential equation in yi(t) is called a coupled differential equation if it
has the form

y′i = Fi(t,y1,y2, . . . ,yn)

for some function Fi in the n+ 1 variables (t,y1,y2, . . . ,yn). The growth rate of the
variable yi = yi(t) is affected by all of the variables y1(t),y2(t), . . . ,yn(t), in addition
to the time t. For example, the differential equation

y′1 = y1 + y2

is coupled in the sense that y2 will contribute to the growth rate of y1, and therefore
the solution y1(t) of the coupled differential equation will depend on y2 = y2(t).

A coupled system of first order differential equations in y1(t),y2(t), . . . ,yn(t) is a
system of differential equations in the form

y′1 = F1(t,y1, . . . ,yn)

y′2 = F2(t,y1, . . . ,yn)

...
y′n = Fn(t,y1, . . . ,yn)

where F1,F2, . . . ,Fn are functions in (t,y1,y2, . . . ,yn). We often abbreviate the name
and call it a system of differential equations. The system is called autonomous if
the functions F1,F2, . . . ,Fn are independent of the time t, and only depend on the
variables (y1,y2, . . . ,yn).

In contrast, the differential equations in Chapter 1 had the form y′i = F(t,yi),
which means that the growth rate y′i of yi = yi(t) only depends on the variable yi(t)
and the time t. In the context of systems of differential equations, a differential

29
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equation of the form y′i = F(t,yi) is called a decoupled differential equation. For
decoupled differential equations, the solution will not depend on the other variables,
and can often be found using the techniques of Chapter 1.

Given a system of differential equations, we may think of (y1,y2, . . . ,yn) as an
n-vector. We call it the state vector of the system, and write it

y(t) =


y1(t)
y2(t)

...
yn(t)

 or y =


y1
y2
...

yn


In other words, the state vector is a collection of n functions y1(t),y2(t), . . . ,yn(t). A
solution of the system of differential equations is a state vector y = y(t) that satisfies
all differential equations in the system. An initial condition for a coupled system is
an initial state vector at an initial time t = t0, given by y(t0) = b for a vector b; in
other words, it is given by the conditions

y1(t0) = b1, y2(t0) = b2, . . . , yn(t0) = bn

where b1,b2, . . . ,bn are given numbers.

Solutions of initial value problems for coupled systems
Let y′1 =F1(t,y1, . . . ,yn), . . . ,y′n =Fn(t,y1, . . . ,yn), y1(t0) = b1, . . . ,yn(t0) = bn
be an initial value problem. If F1, . . . ,Fn are C1 functions in a neighbourhood
around the point (t0,b1, . . . ,bn), then the initial value problem has a unique
solution y = y(t).

Planar systems. Coupled systems of differential equations are called planar in the
special case n = 2. In this case, there are two variables y1 = y1(t) and y2 = y2(t),
and we can write y and z instead of y1 and y2. This is the simplest case of non-
trivial coupled systems. Most of the examples we consider in these notes, are planar
autonomous coupled systems. They can be written in the form

y′ = F(y,z)

z′ = G(y,z)

where F,G are functions in two variables. A simple example of a planar autonomous
system, is the predator-prey system given by

y′ = y(−a+bz)

z′ = z(c−dy)

where a,b,c,d are positive constants. We may think of y(t) and z(t) as the popula-
tion of two species (predator and prey) at time t, where the presence of predators
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has a negative impact on the growth of the prey population, and the presence of prey
has a positive effect on the growth of the predator population.

Second order differential equations as coupled systems. A differential equation
of second order can be rewritten as a planar coupled system of first order differential
equations. Let us write the second order differential in the form y′′ = F(t,y,y′), and
let u = y and v = y′. Then u′ = v and v′ = y′′ = F(t,y,y′) = F(t,u,v), and we obtain
the coupled system

u′ = v

v′ = F(t,u,v)

Let us consider the second order differential equation y′′−4y′+3y = 6 as a simple
example. It can be written as y′′ = 6− 3y+ 4y′. Using u = y and v = y′, we can
therefore rewrite it as the planar coupled system

u′ = v

v′ = 6−3u+4v

In a similar way, any n’th order differential equation can be rewritten as a coupled
system of n first order differential equations in n variables.

Problems

2.1. Solve the planar system of differential equations given by

y′ = y+ z

z′ = 2z

and find the particular solutions with y(0) = 1 and z(0) = 2.

2.2. Rewrite the second order differential equation y′′− 7y′+ 12y = 4 as a planar
system of differential equations.

2.2 Linear systems of differential equations

An autonomous coupled system of first order differential equations is called linear
if it can be written in the form

y′1 = a11 y1 +a12 y2 + · · ·+a1n yn

y′2 = a21 y1 +a22 y2 + · · ·+a2n yn

...
y′n = an1 y1 +an2 y2 + · · ·+ann yn
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In other words, the coupled system is linear if and only if F1, . . . ,Fn are linear forms.
Writing y = y(t) for the state vector, and y′ = y′(t) for the vector of derivatives, we
can write the system in matrix form as y′ = A ·y, or

y′(t) =


y′1(t)
y′2(t)

...
y′n(t)

=


a11 a12 . . . a1n
a21 a22 . . . a2n

...
...

. . .
...

an1 an2
... ann

 ·


y1(t)
y2(t)
. . .

yn(t)

= A ·y(t)

where A is an n×n matrix. It turns out that we can solve this system by decoupling
it, and the decoupling uses the eigenvalues and eigenvectors of the matrix A.

Solution method using eigenvalues and eigenvectors. We consider the case when
y′ = A · y for an n× n diagonalizable matrix A. In other words, we assume that A
has n eigenvalues λ1, . . . ,λn and n linearly independent eigenvectors v1, . . . ,vn with
Avi = λivi for 1≤ i≤ n. This implies that P−1AP = D when we put

P =
(
v1 v2 . . . vn

)
, D =


λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λn


Let us introduce new variables (w1,w2, . . . ,wn), which we think of as an n-vector w,
with w = P−1y, or y = Pw. We compute the left- and right-hand side of the equation
y′ = Ay in terms of w, and get

y′ = (Pw)′ = Pw′, Ay = (PDP−1)y = PDw

This implies that y′ = Ay can be written in the form

Pw′ = P(Dw) ⇒ w′ = Dw ⇒


w′1 = λ1w1

w′2 = λ2w2

. . .

w′n = λnwn

This system is decoupled since each first order differential equation just involves
one variable. The decoupled system has solution

w1 =C1eλ1t , w2 =C2eλ2t , . . . ,wn =Cneλnt

since it is a linear first order (decoupled) differential equation, which we solve using
the methods of Section 1.5. In matrix form, we can write the general solution as
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w =


C1eλ1t

C2eλ2t

...
Cneλnt

 ⇒ y = Pw =
(
v1 v2 . . . vn

)
·


C1eλ1t

C2eλ2t

...
Cneλnt


Multiplication of the matrices in the last equation gives

y(t) =C1v1 eλ1t +C2v2 eλ2t + · · ·+Cnvn eλnt

This is the general solution of the linear system when A is diagonalizable.

General solution of linear systems of differential equations
The linear system y′ = A · y of first order differential equations has general
solution

y(t) =C1v1 eλ1t +C2v2 eλ2t + · · ·+Cnvn eλnt

when A is diagonalizable with n eigenvalues λ1, . . . ,λn and n linearly inde-
pendent eigenvectors v1, . . . ,vn with Avi = λivi for 1≤ i≤ n.

For an example, let us consider the linear system of differential equations in the
variables (y,z) given by

y′ = 3y+4z

z′ = 4y−3z

In this case, A is symmetric and therefore diagonalizable, and we can use the method
described above. We first compute the eigenvalues of A. The characteristic equation
is

det(A−λ I) = λ
2−25 = 0

Therefore, the eigenvalues are λ1 = 5 and λ2 =−5. Next, we find the corresponding
eigenvectors. For λ = 5, the linear system becomes −2y+4z = 0 and 4y−8z = 0.
Both equations give y = 2z with z free. For λ = −5, the linear system becomes
8y+ 4z = 0 and 4y+ 2z = 0. Both equations give z = −2y with y free. We may
therefore choose eigenvectors in E5 and E−5 given by

v1 =

(
2
1

)
, v2 =

(
1
−2

)
This gives

P =

(
2 1
1 −2

)
, D =

(
5 0
0 −5

)
The change of variables are given by y = Pw. This gives

w =

(
u
v

)
⇒

(
y
z

)
=

(
2 1
1 −2

)(
u
v

)
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In other words, y = 2u+ v and z = u−2v. The solutions for u and v are given by

w =

(
u
v

)
=

(
C1e5t

C2e−5t

)
since the decoupled system in u,v is given by u′ = 5u and v′ =−5v. This means that

y =

(
2 1
1 −2

)
·
(

C1e5t

C2e−5t

)
=

(
2C1 e5t +C2 e−5t

C1 e5t −2C2 e−5t

)
In other words, the general solution of the system is given by y(t) = 2C1 e5t +C2 e−5t

and z(t) =C1 e5t −2C2 e−5t .
We remark that there are some cases when A is not diagonalizable, for example

when there are not enough eigenvalues (that is, some of the eigenvalues of A are not
real numbers and involve square roots of negative numbers), or when an eigenvalue
λ has multiplicity m > 1 and there are not enough eigenvectors in Eλ . Also in these
cases, the system of differential equations have solutions that can be found using
eigenvalues and eigenvectors. These cases are more complicated, and outside the
scope of these notes.

Second order differential equations and characteristic equations. Let us con-
sider a homogeneous linear second order differential equation y′′+ ay′+ by = 0,
where a,b are constants. This differential equation can be written as y′′ =−by−ay′,
and when we set u = y and v = y′, we obtain the planar system u′ = y′ = v and
v′ = y′′ =−by−ay′ =−bu−av, which can be written in the form

u′ = v

v′ =−bu−av

This system of differential equations can be written w′ = Aw with

w′ =
(

u′

v′

)
=

(
0 1
−b −a

)
·
(

u
v

)
= A ·w

The characteristic equation of the matrix A is λ 2− tr(A)λ +det(A) = 0, which gives
λ 2 + aλ + b = 0. We notice that this coincides with the characteristic equation of
y′′+ay′+by = 0 from Section 1.10, given by

r2 +ar+b = 0

when r = λ . This is the reason why r2 + ar + b = 0 is called the characteristic
equation of the homogeneous second order linear differential equation.

Problems

2.3. Consider the planar system of differential equations given by y′ = Ay, where
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A =

(
6 −3
−2 1

)
Is A diagonalizable? If it is, solve the system using the eigenvalues and eigenvectors
of A.

2.4. Consider the planar system of differential equations given by y′ = Ay, where

A =

1 2 2
2 4 2
1 2 0


Find the general solution of the system.

2.3 Equilibrium states and stability

Let us consider an autonomous coupled system of first order differential equations
in (y1,y2, . . . ,yn), written as

y′1 = F1(y1, . . . ,yn)

y′2 = F2(y1, . . . ,yn)

...
y′n = Fn(y1, . . . ,yn)

An equilibrium state of the system of differential equations, or a steady state, is a
state vector (y∗1,y

∗
2, . . . ,y

∗
n) such that

F1(y∗1,y
∗
2, . . . ,y

∗
n) = F2(y∗1,y

∗
2, . . . ,y

∗
n) = · · ·= Fn(y∗1,y

∗
2, . . . ,y

∗
n) = 0

If the system starts in an equilibrium state, it will remain there as time passes since
y′1 = y′2 = · · ·= y′n = 0. However, if the initial condition is y(0) = b, and b is close to
the steady state (y∗1,y

∗
2, . . . ,y

∗
n), the state of the system can either approach the steady

state or move away from it as time passes. We say that the steady state is stable in
the first case, and unstable in the second case. It is called globally asymptotically
stable if the state of the system approaches the steady state no matter what the initial
condition is.

For example, we have solved the following linear system of differential equations
in the previous section:

y′ = 3y+4z

z′ = 4y−3z

We found the general solution y(t) = 2C1e5t +C2e−5t and z(t) = C1e5t − 2C2e−5t .
This system has only one steady state (y,z) = (0,0) since det(A) =−25 6= 0, which
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means that Ay = 0 has a unique solution y = 0. Given an initial condition y(0) = b1
and z(0) = b2, we can determine values for C1 and C2. We notice that if C1 6= 0, then

y(t) = 2C1e5t +C2e−5t →±∞, z(t) =C1e5t −2C2e−5t →±∞

as t→ ∞. There are points close to the steady state (0,0) with C1 6= 0. For example,
if h > 0 is small and the initial condition is y(0) = 2h and z(0) = h, then C1 = h > 0
and C2 = 0. This means that the steady state (0,0) is unstable.

Let y′′ = F(y,y′) be a second order autonomous differential equation, and con-
sider the corresponding system of differential equations

u′ = v

v′ = F(u,v)

given by u = y and v = y′. We say that y = ye is an equilibrium state of y′′ = F(y,y′)
if (u,v) = (ye,0) is an equilibrium state of the system of differential equations. This
means that ye is an equilibrium state if and only if F(ye,0) = 0. Moreover, we define
the stability of y = ye to be the stability of (u,v) = (ye,0) as a steady state of this
system.

Problems

2.5. Consider the linear system of differential equations given by y′ = Ay. Show
that if A is a diagonalizable matrix where all the eigenvalues are negative, then 0 is
a globally asymptotically stable steady state of the system.

2.6. Consider the second order differential equation y′′+ 7y′+ 12y = 3. Find the
equilibrium states of this system, and determine their stability. Are the steady states
globally asymptotically stable?



Appendix A
Indefinite integrals

A.1 The indefinite integral

An antiderivative of a function f (t) is a function F(t) such that F ′(t) = f (t). For
example, the function f (t) = 2t has antiderivative F(t) = t2 since (t2)′ = 2t. Since
the derivative of any constant is zero, it follows that t2 +C is also an antiderivative
of f (t) = 2t for any constant C.

Antiderivatives
If f is a continuous function defined on an interval I, then there exists an
antiderivative F(t) of f (t). Moreover, all antiderivatives of f (t) have the form
F(t)+C for a constant C.

We call F(t)+C the general antiderivative of f (t) in this situation. The general
antiderivative is in fact an infinite family of functions, one for each value of C. We
use the notation ∫

f (t)dt = F(t)+C

for the general antiderivative, and call this an indefinite integral. The symbol
∫

is
called the integration symbol, and the symbol dt is a formalism that means that t is
the integration variable. For example, we have that∫

2t dt = t2 +C

Notice that the integration constant C appears in all indefinite integrals. It is an
undetermined coefficient, and this is why the integral is called indefinite.

37
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A.2 Computing indefinite integrals

We can compute many indefinite integrals using integration rules. We start with the
simplest rules, given below. Since

∫
f (t)dt = F(t)+C if and only if F ′(t) = f (t), it

is easy to check that these integration rules hold by computing F ′(t) in each case.

Power rule
We have that ∫

tn dt =
1

n+1
tn+1 +C for n 6=−1

The power rule can be used to integrate tn when n = 1,2, . . . is a positive integer.
For example, in the case n = 2, we have that∫

t2 dt =
1
3

t3 +C

But it can also be used to integrate tn when n is zero, a negative integer with n 6=−1,
or a rational number (a fraction of integers). For example, we have that∫ 1

t2 dt =
∫

t−2 dt =
1
−1

t−1 +C =−1
t
+C∫ √

t dt =
∫

t1/2 dt =
1

3/2
t3/2 +C =

2
3

t
√

t +C

for n =−2 and n = 1/2. In general, it is often useful to rewrite a function as a power
to integrate it. For n =−1, we have the following integration rule for t−1 = 1/t:

We have that ∫ 1
t

dt = ln |t|+C

Notice that the function 1/t is defined for t 6= 0. An antiderivative should there-
fore also defined for t 6= 0. For t > 0, we have that ln t is an antiderivative of 1/t,
since (ln t)′ = 1/t. For t < 0, the function ln(−t) is defined since −t > 0, and since

(ln(−t))′ =
1

(−t)
· (−1) =

1
t

the function ln(−t) is an antiderivative of 1/t for t < 0. For t 6= 0, it follows that
ln |t| is an antiderivative of 1/t, since

ln |t|=

{
ln(t), t > 0
ln(−t), t < 0
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Integrals of linear combinations
For all expressions u(t), v(t) and all constants c, we have that∫

[u(t)+ v(t)]dt =
∫

u(t)dt +
∫

v(t)dt∫
[u(t)− v(t)]dt =

∫
u(t)dt−

∫
v(t)dt∫

c ·u(t)dt = c ·
∫

u(t)dt

This means that we may integrate term by term, just as we differentiate term by
term. For example, we have that∫

t2−3t +2dt =
∫

t2 dt−3
∫

t dt +2
∫

1dt =
1
3

t3−3 · 1
2

t2 +2 · t +C

=
1
3

t3− 3
2

t2 +2t +C

We have computed the integrals of t2, t and 1 = t0 using the power rule.

Integrals of exponential functions
We have that ∫

et dt = et +C∫
at dt = at · 1

ln(a)
+C for a > 0

Even though many indefinite integrals can be computed using the integration
rules above, we must sometimes use more advanced integration techniques. In the
next sections, we go through some of the most useful techniques.

Problems

A.1. Compute the indefinite integrals:
a)
∫
(3t2−12t)dt b)

∫
(2et − t)dt c)

∫
t
√

t dt d)
∫

1/t3 dt e)
∫
(t−1)2 dt

A.2. Compute the indefinite integral∫ t3− t2 +1
t

dt
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A.3 Integration by parts

To differentiate a product, we use the product rule (uv)′= u′v+uv′. The product rule
means that uv, which is an antiderivative of (uv)′ by definition, is an antiderivative
of the right-hand side u′v+uv′, or that∫

u′vdt +
∫

uv′ dt = uv+C

When we solve this equation for the first integral on the left-hand side, we obtain
the following formula:

Integration by parts
For any expressions u = u(t), v = v(t), we have that∫

u′vdt = uv−
∫

uv′ dt

We shall show how to use this formula to solve an indefinite integral of a product,
such as the integral ∫

t · et dt

We let u′ and v be the factors of the product in the integral. In the example above,
we can for instance let u′ = t and v = et . This would give u = t2/2 and v′ = et , as
we need to integrate the first factor and differentiate the other factor to find u and v′.
Therefore, we get ∫

t · et dt = uv−
∫

uv′ dt =
1
2

t2et −
∫ 1

2
t2et dt

Notice that we may choose u to be any antiderivative of t.
The method is called integration by parts since we replace one integral with

another. The idea is of course that the new integral, on the right-hand side, should
be simpler to compute than the original integral. This is not the case in the example
above. However, it is possible to switch the order of the factors in the integral and
choose u′ = et and v = t, since ∫

t · et dt =
∫

et · t dt

This would give u = et and v′ = 1, and therefore∫
tet dt = tet −

∫
1 · et dt = tet −

∫
et dt = tet − et +C

The method works well in this case, since the new integral is easier to solve.
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Another example is the integral of ln(t), which is important in itself since we
often need to integrate logarithms. We may use integration by parts by rewriting the
integral as ∫

ln(t)dt =
∫

1 · ln(t)dt

since this is the integral of a product. We let u′ = 1 and v = ln(t), which gives u = t
and v′ = 1/t, and therefore∫

ln(t)dt =
∫

1 · ln(t)dt = t ln(t)−
∫

t · 1
t

dt = t ln(t)−
∫

1dt = t ln(t)− t +C

The method works well since integrating 1 and differentiating ln(t) gives a simple
integral that we can compute.

Problems

A.3. Compute the indefinite integrals:

a)
∫

t ln(t)dt b)
∫

tet dt c)
∫

t2et dt d)
∫ ln(t)

t2 dt e)
∫ √

t ln(t)dt

A.4. Use integration by parts and recursion to compute the indefinite integral∫ ln(t)
t

dt

A.4 Integration by substitution

To integrate a function such as f (t) = e2t−3, it is tempting to make a change of
variables u = 2t− 3 to simplify the function to eu. When we make this change of
variables, we consider the function f as the composite function

f (t) = e2t−3 = eu with u = 2t−3

with kernel or inner function u = u(t) = 2t−3, and outer function eu. Recall that to
differentiate a composite function, we use the chain rule

d f
dt

=
d f
du
· du

dt
or f ′(t) = f ′(u) ·u′(t)

In the example, this would give us (e2t−3)′ = eu · u′ = e2t−3 · 2 = 2e2t−3 since the
derivative of eu with respect to u is eu. Notice that we must multiply with the deriva-
tive u′ = u′(t) of the kernel.
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If we make a substitution u = u(t) in an integral, we should also take the deriva-
tive u′ = u′(t) of the kernel into account, and we use the formalism

du = u′ ·dt with u′ = u′(t)

to do this. For example, to compute
∫

e2t−3 dt, we let u = 2t− 3. Since u′ = 2, the
formalism above gives du = 2 ·dt, or dt = du/2. The integral can then be computed
by substitution:∫

e2t−3 dt =
∫

eu · du
2

=
1
2

∫
eudu =

1
2

eu +C =
1
2

e2t−3 +C

Notice that we use the equations u = 2t− 3 and du = 2 · dt to write the integral as
an integral in the new variable u, and this means that we divide by u′ = u′(t) in the
integral.

In general, we use a substitution u = u(t) in an integral to transform the integral
in t into one in the new variable u. This means to transform it from the form

∫
f (t)dt

into the form
∫

g(u)du. The idea is of course that the integral in u should be simpler
to compute.

Integration by substitution
When we use the substitution u = u(t) to solve the integral

∫
f (t)dt, we use

the equations u = u(t) and du = u′ ·dt with u′ = u′(t) to rewrite the integral∫
f (t)dt =

∫
g(u)du

When using this method, we try to find a substitution u = u(t) such that the
integral

∫
g(u)du in the new variable u is simpler to solve.

Let us try to use substitution to solve the integral
∫

t ln(t2 +1)dt. In this case, we
choose u = t2 + 1, since this is the inner function in the last factor. The formalism
du = u′ dt then gives du = 2t dt. We therefore obtain∫

t ln(t2 +1)dt =
∫

t ln(u)
du
2t

=
1
2

∫
ln(u)du =

1
2
(u ln(u)−u)+C

We first replace t2 +1 with u in the logarithm, and then replace dt with du/u′ using
du = u′ dt and u′ = 2t. It can be difficult to know from the start if the substitution
will give an integral that is easier to solve, but it is the case here it since all factors
with t cancel. We use that

∫
ln(t)dt = t ln(t)− t +C from the previous section to

solve the integral
∫

ln(u)du. It is usual to write the answer in terms of t, the original
variable, and using u = t2 +1, we get∫

t ln(t2 +1)dt =
1
2
(u ln(u)−u)+C =

1
2
(t2 +1) ln(t2 +1)− 1

2
(t2 +1)+C
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Problems

A.5. Compute the integral
∫

e1−t dt, and check your answer by differentiating it.

A.6. Compute the integral when a,b are constants with a 6= 0:∫ 1
at +b

dt

A.7. Compute the indefinite integrals:

a)
∫

3t
√

t2 +1dt b)
∫ t

t2−1
dt c)

∫
5t(t2−1)3 dt d)

∫ 2t +3
t2 +3t +2

dt

A.8. Compute the indefinite integrals

a)
∫

t et2
dt b)

∫
t3et2

dt c)
∫

e
√

t dt d)
∫ √

t e
√

t dt e)
∫ 2et

et + e−t dt

A.5 Integration of rational functions

A rational function is a function of the form f (t) = p(t)/q(t), where p(t),q(t) are
polynomials in t. Examples of rational functions are

f (t) =
t +1

t2−3t +2
, g(t) =

t +1
t−7

There are several techniques for integrating rational functions. We shall explain how
to use polynomial division and partial fraction decompositions to simplify rational
expressions and make them easier to integrate.

Polynomial division. A rational function can often be simplified by polynomial
division (if n ≥ m, where n is the degree of the numerator p(t) and m is the degree
of the denominator q(t) in the rational expression). In the example g(t) above, we
can write

g(t) =
t +1
t−7

=
t−7+8

t−7
=

t−7
t−7

+
8

t−7
= 1+

8
t−7

We say that this polynomial division has quotient 1 and remainder 8. We can use
this to integrate g(t), since we have∫ t +1

t−7
dt =

∫ (
1+

8
t−7

)
dt = t +8ln |t−7|+C

To integrate 8/(t−7), we have used the substitution u = t−7 with du = dt.
More complicated polynomial divisions are often written in another form, similar

to the way we write long division of integers. As an example, let us consider the
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rational expression
t2−5
t +3

We can simplify this expression using polynomial division, which we write in the
following way: (

t2 −5
)

:
(
t +3

)
= t−3+

4
t +3− t2−3t

−3t−5
3t +9

4

In general, to perform a polynomial division p(t) : q(t), we divide the monomial
in p(t) of highest degree by the monomial in q(t) of highest degree, which gives
t2 : t = t in this case. This is the first term of the quotient. Next, we multiply this
term with q(t), and subtract the product from p(t). In this case, this gives the result
(t2−5)− t(t +3) =−3t−5. This is the remainder so far in the process. Finally, we
repeat the process, with p(t) replaced by the remainder so far, until we have obtained
a remainder of smaller degree than q(t). In this case, the next step is to divide −3t
by t, which gives−3, and then multiply this term back and subtract it from−3t−5.
This gives −3t−5− (−3)(t +3) = 4. Since this remainder has smaller degree than
q(t) = t + 3, the remainder is 4, and the quotient is t− 3. Finally, we can compute
the integral using the result of the polynomial division:∫ t2−5

t +3
dt =

∫ (
t−3+

4
t +3

)
dt =

1
2

t2−3t +4ln |t +3|+C

Again, we use a substitution to solve the last integral
∫

4/(t + 3)dt. Integrals like
this often occurs, and we have the following formula:

The case of linear denominator
For constants A,a,b with a 6= 0, we have that∫ A

at +b
dt =

A
a
· ln |at +b|+C

Integration by partial fraction decomposition. We must use additional methods
to compute the integral of a rational expression when its denominator has higher
degree than one. Sometimes, it is possible to use substitution. For example, we get∫ 2t +3

t2 +3t +2
dt =

∫ 2t +3
u

du
2t +3

=
∫ 1

u
du = ln |u|+C = ln |t2 +3t +2|+C

using the substitution u = t2 + 3t + 2 and du = (2t + 3)dt. This substitution works
well because 2t +3 in the numerator cancels against u′ = 2t +3 in the denominator.
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It would not work equally well in other cases, such as the example∫ 3
t2 +3t +2

dt

In such cases, we simplify the integral using a partial fraction decomposition of the
rational function: We factorize the denominator as t2 +3t +2 = (t +1)(t +2), and
use this to find a decomposition

3
t2 +3t +2

=
A

t +1
+

B
t +2

for constants A,B. To find A,B such that this decomposition is valid, we multiply by
the common denominator (t +1)(t +2), and get

3 = A(t +2)+B(t +1)

The right-hand side equals (A+B)t +(2A+B). Since the equation should hold for
all values of t, we need the linear expression on the right-hand side to have the
same coefficients as the one on the right. Hence A+B = 0 and 2A+B = 3. This
gives B =−A and A = 3, and therefore B =−3. It follows that the partial fractions
decomposition is

3
t2 +3t +2

=
3

t +1
− 3

t +2
We know how to integrate each partial fraction, and therefore we can compute the
integral as∫ 3

t2 +3t +2
dt =

∫ ( 3
t +1

− 3
t +2

)
dt = 3ln |t +1|−3ln |t +2|+C

It is usual to rewrite this answer using the fact that ln(a)− ln(b) = ln(a/b), and this
gives ∫ 3

t2 +3t +2
dt = 3ln |t +1|−3ln |t +2|+C = 3ln

∣∣∣∣ t +1
t +2

∣∣∣∣+C

If the denominator q(t) has higher degree than two, the integral can be solved in a
similar way using partial fractions if we are able to factorize q(t). Sometimes this
is difficult, such as in the case q(t) = t3− 2t + 1, and sometimes it is not possible
using real numbers, such as in the case q(t) = t2 +1.

The case of irreducible quadratic factors in the denominator. A polynomial
at2 + bt + c is called irreducible if it has no roots among the real numbers, and
this happens if and only if b2−4ac < 0. The irreducible quadratic polynomials are
exactly the quadratic polynomials that cannot be factorized in linear factors with
real coefficients.

When the denominator q(t) in a rational expression p(t)/q(t) has factors that are
irreducible quadratic polynomials, we must use other methods, in addition to partial
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fraction decompositions, to solve the integral
∫

p(t)/q(t)dt. A typical irreducible
quadratic polynomial is t2 +1, and we mention that the integral∫ 1

t2 +1
dt = arctan(t)+C

is given in terms of the inverse trigonometric function arctan(t). In general, when the
denominator is an irreducible quadratic polynomial, we have the following formula:

The case of irreducible quadratic denominator
For constants A,a,b,c with a 6= 0 and b2−4ac < 0, we have that∫ A

at2 +bt + c
dt =

2A√
4ac−b2

· arctan
(

2a√
4ac−b2

t +
b√

4ac−b2

)
+C

For example, we have that t2 + 4t + 7 = (t + 2)2 + 3 is an irreducible quadratic
polynomial, since t2+4t+7 = 0 gives (t+2)2 =−3, and this equation has no (real)
solutions. Using the formula above, we find that∫ 1

t2 +4t +7
dt =

2√
12

arctan
(

2t +4√
12

)
+C

since 4ac−b2 = 12 in this case.

Problems

A.9. Use the polynomial division (t2−3t +7) : (t−4) to compute the integral∫ t2−3t +7
t−4

dt

A.10. Compute the indefinite integrals:

a)
∫ t2−3

t +4
dt b)

∫ t +1
t2 +2t +4

dt c)
∫ t

t2−4
dt d)

∫ 3
t(3− t)

dt
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