Problem Sheet 9 DRE 7007 Mathematics

BI Norwegian Business School

Problems

1. Solve the following optimal control problem for T = 3 using dynamic programming:

$$\max \sum_{t=0}^{T} (3-u_t) x_t^2$$

subject to $x_{t+1} = u_t x_t$ and x(0) = 1 when the control region $U = [1,3] \subseteq \mathbb{R}$.

2. Consider the optimal control problem

$$\max \sum_{t=0}^{\infty} \beta^t (-cx_t^2 - u_t^2)$$

subject to $x_{t+1} = x_t + u_t$ and $x(0) = x_0$ when the control region $U = \mathbb{R}$. We assume that c > 0 is given. Find a solution to the Bellman equation of the form $J(x) = -Ax^2$. Is it unique?

Keep answers as short and to the point as possible. Answers must be justified.