Problem Sheet 9
 DRE 7007 Mathematics

BI Norwegian Business School

Problems

1. Solve the following optimal control problem for $T=3$ using dynamic programming:

$$
\max \sum_{t=0}^{T}\left(3-u_{t}\right) x_{t}^{2}
$$

subject to $x_{t+1}=u_{t} x_{t}$ and $x(0)=1$ when the control region $U=[1,3] \subseteq \mathbb{R}$.
2. Consider the optimal control problem

$$
\max \sum_{t=0}^{\infty} \beta^{t}\left(-c x_{t}^{2}-u_{t}^{2}\right)
$$

subject to $x_{t+1}=x_{t}+u_{t}$ and $x(0)=x_{0}$ when the control region $U=\mathbb{R}$. We assume that $c>0$ is given. Find a solution to the Bellman equation of the form $J(x)=-A x^{2}$. Is it unique?

Keep answers as short and to the point as possible. Answers must be justified.

