Problem Sheet 8 DRE 7007 Mathematics

Problems

1. Solve the optimal control problem

$$
\max \int_{0}^{2}\left(3-x^{2}-u^{2}\right) \mathrm{d} t
$$

subject to $\dot{x}=u, x(0)=1, x(2)=4$ when the control region $U=\mathbb{R}$.
2. Solve the optimal control problem

$$
\max \int_{0}^{T}\left(x-\frac{1}{2} u^{2}\right) \mathrm{d} t
$$

subject to $\dot{x}=u, x(0)=x_{0}$ when the control region $U=\mathbb{R}$. Use the optimal pair $\left(x^{*}, u^{*}\right)$ to compute the optimal value function

$$
V\left(x_{0}, T\right)=\int_{0}^{T}\left(x^{*}-\frac{1}{2}\left(u^{*}\right)^{2}\right) \mathrm{d} t
$$

Keep answers as short and to the point as possible. Answers must be justified.

