
D-MODULES ON SMOOTH ALGEBRAIC VARIETIES

EIVIND ERIKSEN

Abstract. We consider algebraic varieties X defined over C which are smooth,
affine and irreducible. We study the ring D = D(X) of C-linear differential
operators on X, and we explain Bernstein’s theory of holonomic D-modules
in this case. This is a generalization of Bernstein’s original work, which covers
the case when X is affine n-space and D is the n’th Weyl algebra. I shall
follow the approach to this generalized theory given in chapter 3 of Björk [1].

1. Differential operators on the variety X

Let k = C denote the field of complex numbers. We consider an affine algebraic
variety X ⊆ Cn such that X is smooth and irreducible. We denote by A = A(X)
the affine coordinate ring of X, so A is a commutative k-algebra of finite type and
an integral domain. In particular, A is a Notherian ring.

Let k(X) denote the quotient field of the integral domain A. Since A is of
finite type over k, it is clear that k ⊆ k(X) is a field extension of finite degree of
transcendence. We denote by d = dim(X) the degree of transcendence of this field
extension. This is the classically defined dimension of the variety X. It is clear that
A is a regular Noetherian ring of pure dimension d. That is, the local Noetherian
ring Am is a regular ring of dimension d for all maximal ideals m ⊆ A. So clearly,
the Krull dimension dim A = d, and we have 0 ≤ d ≤ n with

• d = n if and only if X = Cn,
• d = 0 if and only if X is reduced to a single point.

The vector fields on X are given as θ(X) = Derk(A), where Derk(A) is the
module of derivations

Derk(A) = {D ∈ Endk(A) : D(xy) = D(x)y + xD(y) for all x, y ∈ A}.
Let m ⊆ A be any maximal ideal, let Am be the corresponding local ring and let
t1, . . . , td be a local system of parameters for Am. Then Derk(Am) ∼= Am⊗ADerk(A)
is a free Am-module of rank d, generated by derivations D1, . . . , Dd such that
Di(tj) = δij for 1 ≤ i, j ≤ d.

We may present the ring A in the form A = S/I, where S = k[x1, . . . , xn] is the
affine coordinate ring of Cn and I = I(X) ⊆ S is the prime ideal in S consisting
of all polynomials in S which vanish on X. It is clear that Derk(S) is the free
S-module generated by ∂i = ∂/∂xi for 1 ≤ i ≤ n. It is not difficult to see that
there is a canonical isomorphism

Derk(A) ∼= {P ∈ Derk(S) : P (I) ⊆ I}/I Derk(S),

and that P (I) ⊆ I is satisfied if and only if P (fi) ∈ I for any set of generators
f1, . . . , fr of the ideal I. So Derk(A) can be identified with the kernel of the A-
linear map An → Ar given by the matrix (∂fi/∂xj). Since A is a Noetherian ring,
it follows that Derk(A) is a left A-module of finite type.

We define the ring D = D(X) of k-linear differential operators on X to be the
sub-ring of Endk(A) generated by the multiplication operators induced by the ring
A and the derivations in Derk(A). It follows that D(X) is a associative k-algebra.
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Since A is a finitely generated k-algebra and Derk(A) is a finitely generated A-
module, it follows that D is a k-algebra of finite type.

We denote by Dp ⊆ D the k-linear subspace of D generated by products of at
most p derivations for any integer p. Then Dp = 0 when p < 0, D0 = A, and
D1 = A⊕Derk(A). Moreover, we have that the subspaces Dp form an exhaustive,
ascending filtration of the ring D. This filtration is called the order filtration, and
we say that a differential operator P ∈ D has order p if P ∈ Dp \Dp−1 for some
p ≥ 0, and that P = 0 has order −∞. We shall write d(P ) for the order of the
differential operator P . Note that the filtered ring D coincides with the ring of
differential operators on X/k defined by Grothendieck in EGA IV [2].

Consider the associated graded ring gr D associated with the order filtration of
the ring D, defined as

gr D = ⊕Dp/Dp−1.

This is a graded k-algebra. We shall denote by grp D the p’th homogeneous part
Dp/Dp−1 of gr D for all integers p. Then we have grp D = 0 when p < 0, gr0 D = A
and gr1 D = Derk(A). Since we have d(PQ−QP ) < d(P ) + d(Q) for all non-zero
differential operators P,Q, we see that gr D is a commutative ring. Moreover, it
is a finitely generated k-algebra, and hence Noetherian, since it is generated by
homogeneous elements of degree 1 considered as a gr0 D-algebra.

In the following theorem, we summarize some properties of the rings D and gr D
which will be useful. The proof of most of the statements in this theorem can be
found in Björk [1], and references to the remaining parts can be found in Smith
and Stafford [3]:

Theorem 1. Let X be a smooth, irreducible affine algebraic variety of dimension d
defined over C, let D be the ring of differential operators and let gr D be the asso-
ciated graded ring associated with the order filtration on D. Then we have:
i) D is an associative k-algebra of finite type,
ii) D is an integral domain,
iii) D is a simple ring,
iv) D has global homological dimension d,
v) gr D is a commutative k-algebra of finite type,
vi) gr D is an integral domain,
vii) gr D is a Noetherian regular ring of pure dimension 2d.

2. Modules on filtered rings

Let D be any filtered k-algebra with a fixed ascending filtration {Dp} of k-linear
subspaces of D. We shall assume that the filtration (Dp) is exhaustive and such
that D0 contains the unit 1 ∈ D and such that Dp = 0 for all p < 0. Moreover, we
assume that Dp is finitely generated considered as a left and right D0-module for
all integers p. Finally, let us consider the associated graded ring grD, and assume
that gr D is a commutative Noetherian ring. This last condition implies that D0 is
a commutative, Noetherian k-algebra.

Notice that when X is a smooth, irreducible affine algebraic variety over C and
D = D(X) is the ring of k-linear differential operators with the order filtration,
then these conditions are fulfilled. Moreover, the ring D0 = A, the affine coordinate
ring of X. This example will motivate the constructions in this section.

We refer to any element P ∈ D as an operator, and we denote by d(P ) the order
of the operator P , defined as d(P ) = inf {p : P ∈ Dp}. By convention, d(P ) = −∞
when P = 0. When P ∈ D, we denote by σ(P ) the image of P in Dp/Dp−1 ⊆ gr D
with p = d(P ). By convention, we have σ(P ) = 0 when P = 0.

Let M be a left D-module. We denote by a filtration of M any exhaustive,
ascending filtration {Mi} of M compatible with the given filtration of D such that
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Mi is a finitely generated D0-module for all integers i and Mi = 0 for some integer
i. For any such filtration, we consider the associated graded grD-module

gr M = ⊕Mi/Mi−1.

For any element m ∈ M , we denote by d(m) = inf{i : m ∈ Mi} the order of the
element m. By convention, d(m) = −∞ when m = 0. We denote by σ(m) the
image of m in Mi/Mi−1 ⊆ gr M with i = d(m). By convention, σ(m) = 0 when
m = 0.

Proposition 2. Let M be a left D-module, and let (Mi) be a filtration of M . If
{mα} ⊆ M is a subset of M such that {σ(mα)} is a generating set for gr M as a
left gr D-module, then {mα} is a generating set for M as a left D-module.

Proof. Assume that {σ(mα)} is a generating set of gr M , and let M ⊆ M denote
the left D-module generated by {mα}. It is enough to show that Mi ⊆ M for all
integers i. Since Mi = 0 for some integer i, we can prove this by induction on i. So
assume that Mi−1 ⊆ M , and let m ∈ Mi \Mi−1. Then we have

σ(m) =
∑

σ(Pα)σ(mα)

for operators Pα of degree i− d(mα). If follows that m−∑
Pαmα ∈ Mi−1. By the

induction hypothesis, Mi−1 ⊆ M , so it follows that Mi ⊆ M . ¤

Assume that M is a finitely generated left D-module, and choose a finite set
{mα} of generators for M . We define Mi =

∑
Dimα for all integers i. Then (Mi)

is a filtration of M , and {σ(mα)} is a finite generating set for gr M considered as
a gr D-module. This proves the following proposition:

Proposition 3. Let M be a left D-module. Then there exists a filtration of M such
that gr M is a finitely generated gr D-module if and only if M is a finitely generated
D-module.

Corollary 4. The ring D is left Noetherian.

Proof. Let I ⊆ D be a left ideal. Then I ⊆ D is a left sub-module. Consider the
filtration (Ip) with Ip = I ∩Dp for all integers p. Then the inclusion I ⊆ D induces
an inclusion gr I ⊆ gr D, and in particular, gr I ⊆ gr D is an ideal. Since gr D is a
Noetherian ring, this is a finitely generated ideal. By the above proposition, this
means that I is a finitely generated left D-module, hence a finitely generated ideal
in D. It follows that D is a left Noetherian ring. ¤

Let M be a left D-module, and let (Mi) be a filtration of M . We say that (Mi)
is a good filtration if the associated graded gr D-module gr M is finitely generated.
By the above proposition, there exists a good filtration of any finitely generated
left D-module. We show the following strong result on their uniqueness:

Proposition 5. Let M be a left D-module, and let (Mi), (M ′
i) be good filtrations

of M . Then there exists a non-negative integer w such that M ′
i−w ⊆ Mi ⊆ M ′

i+w

for all integers i.

Proof. It is enough to show that there exists a non-negative integer w such that
Mi ⊆ M ′

i+w for all integers i. We may also assume that Mi is a filtration such that
Mi = 0 when i < 0. Denote by gr M the graded gr D-module associated with the
filtration (Mi). This is by definition a finitely generated gr D-module, so we may
find an integer v ≥ 0 such that

gr M≤v = ⊕
i≤v

Mi/Mi−1
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generates gr M . We define the k-vector space Ni = DiM0 + · · · + Di−vMv ⊆ Mi

for all i ≥ v. Clearly, we have Nv = Mv since 1 ∈ D0. Let m ∈ Mi \Mi−1 for some
i > v. Then we have

σ(m) ∈ (Di/Di−1)(M0/M−1) + · · ·+ (Di−v/Di−v−1)(Mv/Mv−1),

so Mi ⊆ Ni + Mi−1 for all i > v. By induction, this gives Mi = Ni for all i ≥ v.
Consider the filtration of Mv given by k-linear subspaces Mv∩M ′

i . This filtration is
exhaustive and each M ′

i is finitely generated as left D0-module. Hence there exists
an integer w such that Mv ⊆ M ′

w. We see that if i < v, we have

Mi ⊆ Mv ⊆ M ′
w ⊆ M ′

i+w.

If i ≥ v, then for each integer j with 0 ≤ j ≤ v, we have that

Di−jMj ⊆ Di−jMv ⊆ Di−jM ′
w ⊆ DiM ′

w ⊆ M ′
i+w.

This means that Mi = Ni ⊆ M ′
i+w for all integers i ≥ v. So we have proved that

Mi ⊆ M ′
i+w for all integers i. ¤

Let M be a left D-module, and (Mi) a chosen good filtration of M . We consider
the associated graded ring grM with respect to this chosen filtration. This is
a finitely generated gr D-module by definition. Recall that gr D is a commutative
Noetherian k-algebra, and let m ⊆ gr D be a maximal ideal. Then (gr D)m is a local
Noetherian ring, and (gr M)m = (gr D)m⊗gr D gr M is a finitely generated (gr D)m-
module. Then there exists a uniquely defined Hilbert-Zariski-Samuel polynomial
for the (gr D)m-module (gr M)m, and we may define the local dimension dm(grM)
and the local multiplicity em(grM) of gr M at the maximal ideal m. We shall show
that these local invariants do not depend on the chosen good filtration of M :

Proposition 6. Let M be a left D-module, let (Mi), (M ′
i) be good filtrations of M ,

and let gr M, gr′M be the corresponding gr D-modules. Then for all maximal ideals
m ⊆ gr D, we have dm(gr M) = dm(gr′M) and em(grM) = em(gr′M).

Proof. From the previous proposition, we have that M ′
i−w ⊆ Mi ⊆ M ′

i+w for some
integer w. Clearly, the local invariants are not changed by shifts, so we may assume
that M ′

i ⊆ Mi ⊆ M ′
i+w for all integers i by a shift in the filtration Mi, if necessary.

We shall define a sequence of good filtrations of M , (T p
i ) for 0 ≤ p ≤ w, with

the following properties: T 0
i = M ′

i , Tw
i = Mi for all integers i, T p

i ⊆ Mi for
all integers i, p, and the good filtrations (T p

i ) give the same local invariants for
0 ≤ p ≤ w. This construction would clearly prove the proposition. We put T 0

i = M ′
i

for all integers i, and we define the filtrations (T p
i ) by induction on p. So assume

that good filtrations (T 0
i ), . . . , (T p−1

i ) are defined with the required properties. We
define T p

i = Mi ∩ T p−1
i+1 for all integers i. Since (T p−1

i ) is a filtration and D0 is a
commutative Noetherian ring, it is clear that (T p

i ) is a filtration as well. We have
to show that (T p

i ) is a good filtration.
We see that T p−1

i ⊆ T p
i ⊆ T p−1

i+1 for all integers i. So there are short exact
sequences

0 → T p
i /T p−1

i → T p−1
i+1 /T p−1

i → T p−1
i+1 /T p

i → 0

and
0 → T p−1

i+1 /T p
i → T p

i+1/T p
i → T p

i+1/T p−1
i+1 → 0

of k-vector spaces. Let Zp = ⊕T p
i /T p−1

i and Bp = T p−1
i+1 /T p

i , then Zp and Bp are
graded gr D-modules. We denote by gr(p) M the graded gr D-module associated
with the filtration (T p

i ) for all integers p. Then we have exact sequences

0 → Zp → gr(p−1) M → Bp → 0
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and
0 → Bp → gr(p) M [1] → Zp[1] → 0

of graded grD-modules. Since (T p−1
i ) is a good filtration and gr D is Noetherian,

all modules in the first exact sequence are finitely generated gr D-modules. Since
the property of being finitely generated, graded gr D-modules is independent upon
shifts, it follows that all modules in the second exact sequence are finitely generated
gr D-modules as well. Consequently, we see that (T p

i ) is a good filtration as well.
We also see from the exact sequences given above that the good filtrations (T p−1

i )
and (T p

i ) give the same local invariants, since these invariants are independent upon
shifts.

It only remains to see that Tw
i = Mi for all integers i. But an easy induction

argument shows that T p
i = Mi ∩ T p−j

i+j for all integers j with 0 ≤ j ≤ p. With
p = w, this gives Tw

i = Mi ∩ T 0
i+w = Mi ∩M ′

i+w = Mi for all integers i. ¤

Let M be a left D-module of finite type, and let m ⊆ gr D be a maximal ideal.
We define the local dimension dm(M) and the local multiplicity em(M) of M to
be the local dimension and multiplicity of the associated graded module grM with
respect to some good filtration of the D-module M . By the above proposition,
these invariants are independent upon the choice of good filtration of M .

Let M be a left D-module of finite type. We define the dimension of M to be
d(M) = sup{dm(M) : m ⊆ gr D is a maximal ideal}, and the multiplicity of M to
be e(M) = inf{em(M) : m ⊆ gr D is a maximal ideal such that dm(M) = d(M)}.
We easily deduct the following properties of these invariants:

Proposition 7. Let 0 → M ′ → M → M ′′ → 0 be a short exact sequence of
finitely generated left D-modules. Then d(M) = sup{d(M ′), d(M ′′)}. Moreover, if
d(M ′) = d(M ′′), then e(M) = e(M ′) + e(M ′′).

Let M be a left D-module, and let (Mi) be a good filtration of M . We consider
the associated graded gr D-module gr M associated with (Mi). Let J(M) be the
radical of the annihilator ideal a = anngr D gr M ⊆ gr D. Then J(M) is a radical,
graded ideal in gr D, and we show that it does not depend upon the chosen good
filtration of M :

Proposition 8. Let M be a left D-module, let (Mi), (M ′
i) be good filtrations of M ,

and let gr M, gr′M be the associated gr D-modules. We denote by J(M), J ′(M) the
radicals of the corresponding annihilator ideals. Then J(M) = J ′(M).

Proof. It is clearly enough to prove that J(M) ⊆ J ′(M), and we may show this
inclusion by considering homogeneous elements. So let σ(P ) ∈ J(M) be an homoge-
neous element of degree d, and assume that σ(P )m gr M = 0. Then P ∈ Dp \Dp−1,
such that PmMi ⊆ Mi+md−1 for all integers. By iterating this equation q times, we
get P qmMi ⊆ Mi+qmd−q for all integers i. But since (Mi), (M ′

i) are good filtrations
of M , we have Mi−w ⊆ M ′

i ⊆ Mi+w for all integers i. With q = 2w + 1, these
equations give

Pm(2w+1)M ′
i ⊆ Pm(2w+1)Mi+w ⊆ Mi+md(2w+1)−w−1 ⊆ M ′

i+md(2w+1)−1.

This means that σ(P )m(2w+1) gr′M = 0, so σ(P ) ∈ J ′(M). ¤

We define the characteristic variety Char(M) of M to be the variety correspond-
ing to the the radical ideal J(M). This is an affine variety, with affine coordinate
ring grD/J(M). The closed points in this variety corresponds to the maximal
ideals m ⊆ gr D such that J(M) ⊆ m, or equivalently such that (gr M)m 6= 0. We
denote by d(M) the Krull dimension of gr D/J(M), which equals the dimension of
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Char(M). Clearly, d(M) also coincides with the dimension of M defined above via
Hilbert-Zariski-Samuel polynomials.

We remark that all the result given in this section for left D-modules, hold equally
well for right D-modules. This follows from the symmetry of the assumptions on the
filtered ring D. We also note that all results hold equally well for an algebraically
closed field k of characteristic 0. Moreover, if k is a field of characteristic 0 but
not necessarily algebraically closed, all results in this section except the results on
characteristic variety still hold.

3. The Weyl algebra An(k)

Consider the case X = Cn. In this case, X is a smooth variety of dimension
d = n, and its affine coordinate ring is the polynomial ring A = k[x1, . . . , xn].
Clearly, the module of derivations on A is the free A-module with generators
∂1, . . . , ∂n, where ∂i = ∂/∂xi for 1 ≤ i ≤ n. It follows that the corresponding
ring of differential operators D = D(X) is the n’th Weyl-algebra An(k), which has
generators x1, . . . , xn, ∂1, . . . , ∂n and relations [∂i, xi] = 1 for 1 ≤ i ≤ n.

We may consider D a filtered ring, with the order filtration (Dp), as explained in
the section 1. When we do, the results from theorem 1 applies. In particular, grD is
a polynomial ring in 2n variables over k. It is isomorphic to k[x1, . . . , xn, ξ1, . . . , ξn],
where ξi denotes the image of ∂i in gr D for 1 ≤ i ≤ n.

We shall define another filtration on the ring D with similar properties, the
Bernstein filtration (Bp): For any integer p, we define Bp to be the k-linear subspace
of D generated by all differential operators of the form

xl1
1 . . . xln

n ∂m1
1 . . . ∂mn

n

for integers l1, . . . ,mn such that l1 + · · ·+mn ≤ p. We immediately see that Bp = 0
when p < 0 and that B0 = k. Furthermore, it is not hard to check that (Bp) is
an ascending, exhaustive filtration of D such that Bp is a finite dimensional vector
space over B0 = k for all integers p. A straight-forward computation shows that
the associated graded ring with respect to the Bernstein filtration is a polynomial
ring in 2n variables, isomorphic to k[x1, . . . , xn, ∂1, . . . , ∂n] as k-algebras.

We conclude that the ring D = An(k) with the Bernstein filtration fulfills all the
condition of section 2, so all results from this section applies to this ring. We also
notice that the graded ring gr D associated with the Bernstein filtration clearly is
a regular Noetherian ring of pure dimension 2d = 2n.

Let M be a finitely generated left D-module, and let (Mn) be a good filtration of
M with respect to the Bernstein filtration of D. We consider the associated graded
gr D-module gr M , and we denote by d(M) its Krull dimension. By standard
results about Hilbert functions, there exists a Hilbert polynomial PM ∈ Q[t], which
depends upon the chosen good filtration, such that dimk Mi = PM (i) for all i >> 0.
Furthermore, this polynomial has leading term e/d!td, where d = d(M) and e is a
strictly positive integer which does not depend upon the chosen good filtration.

Consider any good filtration of a left D-module M compatible with the Bernstein
filtration. We notice that the dimension of M defined via Hilbert polynomials and
the dimension of M defined via Hilbert-Zariski-Samuel polynomials both equal the
Krull dimension d(M) of grM , and hence these two dimensions coincide. We shall
later see that the dimension d(M) also coincides with the dimension of M defined
via a good filtration compatible with the order filtration of D.

Lemma 9. Let M be a left D-module of finite type, and let (Mi) be a good filtration
of M such that M0 6= 0. Then the map Bp → Homk(Mp, M2p) is injective for all
integers p ≥ 0.
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Proof. For p = 0, the claim follows from M0 6= 0. Let us prove the claim by
induction on p, so assume that the claim holds for p − 1 when p > 0, and assume
that PMp = 0 for some P ∈ Bp. Then clearly [P, xi]Mp−1 = [P, ∂i]Mp−1 = 0, so
P is in the centre of D by the induction hypothesis. But the centre of D is k and
Mp 6= 0 since M0 ⊆ Mp, so this means that P = 0. ¤

Theorem 10. Let M be a non-zero left D-module of finite type. Then d(M) ≥ n.

Proof. Clearly, we can choose a good filtration of M such that M0 6= 0. Let PM

be the corresponding Hilbert polynomial. We know that the Hilbert polynomial
corresponding to the Bernstein filtration of the D-module M = D has leading
coefficient 1/(2n)! t2n. So it follows from the previous lemma that the degree of
PM is at least n, since dimk Bp ≤ (dimk Mp)(dimk M2p) for all p ≥ 0. ¤

We say that any finitely generated D-module M such that M 6= 0 and d(M) = n
or such that M = 0 is holonomic. From elementary facts about additivity of Hilbert
functions along exact sequences, we see that any extension of holonomic modules
is holonomic. From the previous theorem, it also follows that sub-modules and
quotients of holonomic modules are holonomic.

Corollary 11. Let M be a holonomic D-module. Then M is an Artinian and
cyclic D-module.

Proof. It is clear that any chain of submodules of M consists of holonomic modules.
Since the multiplicity e is strictly smaller for a sub-module of a holonomic module,
it follows that the multiplicity e of M is an upper bound for the length of M . This
means that M is Artinian. But D is clearly not a left Artinian ring. We shall later
see that this means that M is cyclic. ¤

Let λ be a fixed transcendental element over A = k[x1, . . . , xn], and let k(λ)
be the field extension of k = C generated by λ. It is not difficult to see that the
results of this section still hold over the field k(λ). In particular, we may define the
category of holonomic modules over the ring D(λ) = An(k(λ)).

Let f ∈ A be a fixed polynomial of degree m. We consider the left D(λ)-module
M = k(λ)[x1, . . . , xn][1/f ]fλ, where we consider fλ a formal symbol acted on by
the derivation ∂i according to the formula

∂if
λ = λ/f ∂i(f) fλ

for 1 ≤ i ≤ n. We shall consider the functional equation

P (λ)fλ+1 = B(λ)fλ,

where P (λ) ∈ D[λ] and B(λ) ∈ k[λ]. It is clear that all polynomials B(λ) which
satisfy this functional equation for some P (λ) form an ideal in k[λ], and we denote
this ideal by b ⊆ k[λ]. If this ideal is non-zero, there exists a unique monic polyno-
mial b(λ) ∈ k[λ] such that b(λ) generates the ideal b. In this case, we say that b(λ)
is a Bernstein polynomial for f ∈ A.

Lemma 12. Let M be a left D(λ)-module, and let (Mi) be a filtration of M such
that dimk Mi ≤ c/n! in + c′(i + 1)n−1 for some positive integers c, c′. Then M is
holonomic. In particular, M is a finitely generated D(λ)-module.

Theorem 13. Let f ∈ A = k[x1, . . . , xn] be a polynomial. Then there exists a
Bernstein-polynomial b(λ) ∈ k[λ] of f .

Proof. Consider the D(λ)-module M defined above, and let Mi be the k-linear
subspace of the form

Mi = {q/f i fλ : deg(q)−mi ≤ i}
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for all integers i, where m is the degree of f . Then it is easy to see that Mi is a
filtration of M , and we have that

dimk Mi =
(

n−i(m+1)
n

)
,

so by the previous lemma, M is a holonomic D(λ)-module. It follows that the
cyclic sub-module N ⊂ M generated by fλ is holonomic, and hence of finite length.
Therefore the descending chain N = N0 ⊇ N1 ⊇ . . . , where Nl is the cyclic sub-
module generated by fλ+l, is stationary. It follows that there exists a differential
operator P ∈ D(λ) such that fλ+l = Pfλ+l+1. We may substitute λ + l with λ,
since λ is transcendent over k. Clearing the denominators of P shows that the ideal
b is non-zero, and the result follows. ¤

4. Modules on filtered rings with regularity conditions

Let D be a filtered k-algebra. In this section, we shall assume that all the
conditions of section 2 are fulfilled, and in addition that grD is a regular Noetherian
ring of pure dimension ω. This condition implies that grD has global homological
dimension ω and that D has a global homological dimension µ ≤ ω.

Let M be a non-zero, left D-module of finite type. We may define the homological
invariant h(M) of M as

h(M) = inf {i ≥ 0 : Exti
D(M, D) 6= 0}.

This invariant exists, and satisfy 0 ≤ h(M) ≤ µ. Furthermore, we denote by d(M)
the dimension of M defined via Hilbert-Zariski-Samuel polynomials. Then we have
the following result:

Theorem 14. Let M be a non-zero, left D-module of finite type, and assume that
gr D is a regular Noetherian ring of pure dimension ω. Then d(M) + h(M) = ω.

Proof. See Björk [1], theorem 2.4.15, 2.5.7 and 2.7.1. ¤
We see that if D is an associative k-algebra with two distinct filtrations which

satisfy the conditions of this section, then the dimension d(M) defined via Hilbert-
Zariski-Samuel polynomials is independent upon the chosen filtration of D. In
particular, this applies to the ring D(X) = An(k) corresponding to the variety
X = Cn: In this case, we may consider the order filtration or the Bernstein filtration
of D(X), and they both satisfy the conditions of the theorem. So this proves our
claim from the previous section that the dimension d(M) is independent upon which
filtration we use.

Corollary 15. Let M be a non-zero, left D-module of finite type, let µ be the global
homological dimension of D, and assume that gr D is a regular Noetherian ring of
pure dimension ω. Then d(M) ≥ ω − µ.

We say that a left D-module M of finite type is holonomic if M = 0 or if
M is non-zero and d(M) = ω − µ. It follows from the results of the section 2
that extensions of holonomic modules are holonomic, and that sub-modules and
quotients of holonomic modules are holonomic.

Theorem 16. Let M be a finitely generated left D-module. If M is a holonomic
D-module, then M is Artinian and cyclic.

Proof. Clearly, any chain of sub-modules of M consists of holonomic modules, and
the multiplicity e(M) is strictly smaller for a holonomic sub-module. This means
that the length of chains of sub-modules of M is bounded above by e(M), and in
particular M is Artinian. Since D is not left Artinian, we shall later see that M is
cyclic. ¤
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5. Holonomic D-modules

Let X ⊆ Cn be a smooth, irreducible affine algebraic variety of dimension d, and
let D = D(X) be the ring of differential operators on X, equipped with the order
filtration. Then the filtered ring D satisfies the conditions of section 4. Moreover,
the pure dimension of gr D is ω = 2d, and the global homological dimension of D
is µ = d. So for every non-zero, left D-module M of finite type, we have d(M) ≥ d
where d = dim X. Furthermore, the category of holonomic D-modules consists of
all D-modules M with d(M) = d or M = 0. We have seen that any holonomic D-
module M is Artinian and cyclic. The last implication uses the following theorem,
which is due to Stafford (and which we used in section 3, as well):

Theorem 17. Let R be any associative ring such that R is simple and such that R
is not left Artinian. Then any Artinian left R-module is cyclic.
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