Solutions	Mock Midterm exam
Date	October 2022

Solutions to Exercise problems

Question 1.

We have $\operatorname{dim} \operatorname{Null}(A)=n-\operatorname{rk}(A)=4-2=2$ since A has an echelon form with two pivots:

$$
A=\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
0 & -1 & -1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Question 2.

Yes, the point $(1,1,-2)$ is a solution of the linear system with $x=y=1$: Since $(2,4,0)$ and $(3,7,2)$ are solutions of a linear system, all points on the line through these points are also solutions by the linear property:

$$
(x, y, z)=(2,4,0)+t(1,3,2)=(2+t, 4+3 t, 2 t) \quad \Rightarrow \quad(x, y, z)=(1,1,-2) \text { when } t=-1
$$

Question 3.

The equilibrium state is $\mathbf{v}=(1 / 3,2 / 3)$ since the Markov chain is regular, and the eigenvector $(1,2)$ is a base of the eigenspace

$$
E_{1}=\operatorname{Null}\left(\begin{array}{cc}
-0.26 & 0.13 \\
0.26 & -0.13
\end{array}\right)=\operatorname{Null}\left(\begin{array}{cc}
-2 & 1 \\
0 & 0
\end{array}\right)
$$

with $1 / 3 \cdot(1,2)=(1 / 3,2 / 3)$ as the unique state vector in E_{1}.

Question 4.

No, \mathbf{v} is not in $\operatorname{Col}(A)$ since Gaussian elimination gives

$$
\left(\begin{array}{ccc|c}
1 & 1 & 2 & 1 \\
2 & 1 & 0 & 3 \\
5 & 4 & 6 & 1
\end{array}\right) \rightarrow\left(\begin{array}{ccc|c}
1 & 1 & 2 & 1 \\
0 & -1 & -4 & 1 \\
0 & -1 & -4 & -4
\end{array}\right) \rightarrow\left(\begin{array}{ccc|c}
1 & 1 & 2 & 1 \\
0 & -1 & -4 & -1 \\
0 & 0 & 0 & -5
\end{array}\right)
$$

and this linear system has no solutions.

Question 5.

The orthogonal projection is $\operatorname{proj}_{\mathbf{w}}(\mathbf{v})=(1,1,1,1)$ since

$$
\operatorname{proj}_{\mathbf{w}}(\mathbf{v})=\frac{\mathbf{v} \cdot \mathbf{w}}{\mathbf{w} \cdot \mathbf{w}} \mathbf{w}=\frac{4}{4} \cdot(1,1,1,1)=(1,1,1,1)
$$

Question 6.

We have that $\operatorname{dim} \operatorname{Null}(A)=n-\operatorname{rk}(A)=5-3=2$ since it follows from the values of the minors that A has three pivot positions at $(1,1),(2,2)$, and $(3,3)$, and no pivot positions in the last row.

Question 7.

The vectors are linearly independent for all values of t, since there is no value of t making these minors zero simultaneously:

$$
\left|\begin{array}{ll}
t & 3 \\
2 & 6
\end{array}\right|=6 t-6=6(t-1), \quad\left|\begin{array}{ll}
2 & 6 \\
3 & t
\end{array}\right|=2 t-18=2(t-9)
$$

Question 8.

The characteristic equation of A is $-\lambda^{3}+14 \lambda^{2}-21 \lambda=0$ since $c_{1}=\operatorname{tr}(A)=14, c_{2}=7+7+7=21$, and $c_{3}=|A|=0$ (the third row of A is the sum of the other two rows).

Question 9.

The equilibrium state is $\mathbf{v}=(5 / 20,7 / 20,8 / 20)$ since the Markov chain is regular, and the eigenvector $(5,7,8)$ is a base of the eigenspace

$$
E_{1}=\operatorname{Null}\left(\begin{array}{ccc}
-0.6 & 0.2 & 0.2 \\
0.4 & -0.4 & 0.1 \\
0.2 & 0.2 & -0.3
\end{array}\right)=\operatorname{Null}\left(\begin{array}{ccc}
2 & 2 & -3 \\
-6 & 2 & 2 \\
4 & -4 & 1
\end{array}\right)=\operatorname{Null}\left(\begin{array}{ccc}
2 & 2 & -3 \\
0 & 8 & -7 \\
0 & -8 & 7
\end{array}\right)
$$

with $1 / 20 \cdot(5,7,8)=(5 / 20,7 / 20,8 / 20)$ as the unique state vector in E_{1} since $5+7+8=20$.

Question 10.

The matrix A diagonalizable when $s \neq 1$, since the eigenvalues of A is $\lambda=3, s, 1$, and therefore A is diagonalizable for $s \neq 1,3$. Moreover, $\operatorname{dim} E_{3}=2=m$ when $s=3$ and $\operatorname{dim} E_{1}=1<m$ when $s=1$ in the cases of multiplicity $m=2$.

Question 11.

The rank of A is $\operatorname{rk} A=1$ since $\operatorname{dim} E_{0}=\operatorname{dim} \operatorname{Null}(A)=2$ and $\operatorname{dim} \operatorname{Null}(A)=3-\operatorname{rk} A$.

Question 12.

The quadratic form q is positive semidefinite by the RRC since its symmetric matrix A has $D_{1}=2$, $D_{2}=7$, and $D_{3}=0$ (the last row of A is the sum of the two other rows), hence rk $A=2$:

$$
A=\left(\begin{array}{lll}
2 & 1 & 3 \\
1 & 4 & 5 \\
3 & 5 & 8
\end{array}\right)
$$

Question 13.

The rank of A is rk $A=3$ since it has an echelon form with three pivots:

$$
A=\left(\begin{array}{cccc}
2 & 0 & 0 & 0 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 0 \\
0 & -1 & 0 & 1
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
2 & 0 & 0 & 0 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Question 14.

We have $\operatorname{dim} V=\operatorname{dim} \operatorname{Null}(A)=5-\operatorname{rk} A=5-4=1$ since $V=\operatorname{Null}(A)$ of the matrix A of rank 4:

$$
A=\left(\begin{array}{ccccc}
1 & 0 & 1 & 2 & 3 \\
0 & 0 & 1 & 2 & 1 \\
0 & 1 & -1 & 1 & 0 \\
1 & 1 & 1 & 1 & 1
\end{array}\right) \rightarrow\left(\begin{array}{ccccc}
1 & 0 & 1 & 2 & 3 \\
0 & 1 & -1 & 1 & 0 \\
0 & 0 & 1 & 2 & 1 \\
0 & 1 & 0 & -1 & -2
\end{array}\right) \rightarrow\left(\begin{array}{ccccc}
1 & 0 & 1 & 2 & 3 \\
0 & 1 & -1 & 1 & 0 \\
0 & 0 & 1 & 2 & 1 \\
0 & 0 & 0 & -4 & -3
\end{array}\right)
$$

Question 15.

The rank of A is $\mathrm{rk} A=1$ if $t=1$, and $\operatorname{rk} A=3$ if $t \neq 1$, since A has an echelon form

$$
A=\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & t & t^{2} & t^{3} \\
1 & 1 & t & t^{2}
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
0 & t-1 & t^{2}-1 & t^{3}-1 \\
0 & 0 & t-1 & t^{2}-1
\end{array}\right)
$$

with marked pivots if $t \neq 1$, and just the pivot in the first row if $t=1$.

Question 16.

The eigenvalues of A are $\lambda_{1}=\lambda_{2}=3$ and $\lambda_{3}=7$ since the characteristic equation of A is

$$
\left|\begin{array}{ccc}
5-\lambda & 0 & 2 \\
0 & 3-\lambda & 0 \\
2 & 0 & 5-\lambda
\end{array}\right|=(3-\lambda)\left(\lambda^{2}-10 \lambda+21\right)=-(\lambda-3)(\lambda-3)(\lambda-7)=0
$$

Question 17.

We have that $\lambda=-1$ is an eigenvalue of A with multiplicty $m=3$ since $A-\lambda I=A+I$ has rank $\operatorname{rk}(A+I)=1$:

$$
A+I=\left(\begin{array}{llll}
3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3
\end{array}\right) \rightarrow\left(\begin{array}{llll}
3 & 3 & 3 & 3 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Therefore $\operatorname{dim} E_{-1}=4-1=3$, and $m=\operatorname{dim} E_{-1}=3$ since A is symmetric.

Question 18.

The quadratic form q is indefinite since the principal 2-minor $\Delta_{2}=M_{14,14}=0-1=-1$ of the symmetric matrix A is negative:

$$
A=\left(\begin{array}{cccc}
3 & 1 & 4 & -1 \\
1 & 1 & 2 & 1 \\
4 & 2 & 6 & 0 \\
-1 & 1 & 0 & 0
\end{array}\right)
$$

Question 19.

An orthonormal base of $\operatorname{Null}(A+2 I)$ is given by $\{1 / \sqrt{2} \cdot(-1,0,1), 1 / \sqrt{6} \cdot(1,-2,1)\}$, since the vectors $\mathbf{v}_{1}=(-1,0,1)$ and $\mathbf{v}_{2}=(0,-1,1)$ is base of the nullspace of $A+2 I$, which has echelon form

$$
A+2 I=\left(\begin{array}{lll}
3 & 3 & 3 \\
3 & 3 & 3 \\
3 & 3 & 3
\end{array}\right) \rightarrow\left(\begin{array}{lll}
3 & 3 & 3 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

and $\mathbf{v}_{2}^{\prime}=\mathbf{v}_{2}-\operatorname{proj}_{\mathbf{v}_{1}}\left(\mathbf{v}_{2}\right)=(0,-1,1)-1 / 2 \cdot(-1,0,1)=1 / 2 \cdot(1,-2,1)$ is orthogonal to \mathbf{v}_{1}.

Question 20.

The matrix A is indefinite since $\operatorname{det}(A)=\lambda_{1} \cdot \lambda_{2} \cdot \lambda_{3}=-6<0$ means that one or three of the eigenvalues are negative, and $\operatorname{tr}(A)=4>0$ means that not all three eigenvalues can be negative; therefore A has one negative and two positive eigenvalues.

Question 21.

The stationary point $(1,1,1)$ is a local minimum point for f since $(1,1,1)$ satisfies the FOC's

$$
f_{x}^{\prime}=4 x^{3}-4 y z=0, \quad f_{y}=4 y^{3}-4 x z=0, \quad f_{z}^{\prime}=4 z^{3}-4 x y=0
$$

and the Hessian at $(1,1,1)$ is positive definite with $D_{1}=12, D_{2}=128$, and $D_{3}=1024$:

$$
H(f)(1,1,1)=\left(\begin{array}{ccc}
12 & -4 & -4 \\
-4 & 12 & -4 \\
-4 & -4 & 12
\end{array}\right)
$$

Question 22.

We have that f is convex if $a \geq 0$ and concave if $a \leq 0$ since $H(f)=-a \cdot H(g)$ and $H(g)$ is negative semidefinite. This means that $H(f)$ is positive semidefinite when $a \geq 0$, and negative semidefinite when $a \leq 0$.

