Solutions	Mock Midterm exam
Date	October 2022

Solutions to Exercise problems

Question 1.

We have dim Null(A) = n - rk(A) = 4 - 2 = 2 since A has an echelon form with two pivots:

$$A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{pmatrix} \to \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & -1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Question 2.

Yes, the point (1, 1, -2) is a solution of the linear system with x = y = 1: Since (2, 4, 0) and (3, 7, 2) are solutions of a linear system, all points on the line through these points are also solutions by the linear property:

$$(x, y, z) = (2, 4, 0) + t(1, 3, 2) = (2 + t, 4 + 3t, 2t) \implies (x, y, z) = (1, 1, -2)$$
 when $t = -1$

Question 3.

The equilibrium state is $\mathbf{v} = (1/3, 2/3)$ since the Markov chain is regular, and the eigenvector (1, 2) is a base of the eigenspace

$$E_1 = \text{Null} \begin{pmatrix} -0.26 & 0.13\\ 0.26 & -0.13 \end{pmatrix} = \text{Null} \begin{pmatrix} -2 & 1\\ 0 & 0 \end{pmatrix}$$

with $1/3 \cdot (1,2) = (1/3,2/3)$ as the unique state vector in E_1 .

Question 4.

No, **v** is not in Col(A) since Gaussian elimination gives

$$\begin{pmatrix} 1 & 1 & 2 & | & 1 \\ 2 & 1 & 0 & | & 3 \\ 5 & 4 & 6 & | & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 2 & | & 1 \\ 0 & -1 & -4 & | & -1 \\ 0 & -1 & -4 & | & -4 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 2 & | & 1 \\ 0 & -1 & -4 & | & -1 \\ 0 & 0 & 0 & | & -5 \end{pmatrix}$$

and this linear system has no solutions.

Question 5.

The orthogonal projection is $\text{proj}_{\mathbf{w}}(\mathbf{v}) = (1, 1, 1, 1)$ since

$$\operatorname{proj}_{\mathbf{w}}(\mathbf{v}) = \frac{\mathbf{v} \cdot \mathbf{w}}{\mathbf{w} \cdot \mathbf{w}} \mathbf{w} = \frac{4}{4} \cdot (1, 1, 1, 1) = (1, 1, 1, 1)$$

Question 6.

We have that dim Null(A) = n - rk(A) = 5 - 3 = 2 since it follows from the values of the minors that A has three pivot positions at (1, 1), (2, 2), and (3, 3), and no pivot positions in the last row.

Question 7.

The vectors are linearly independent for all values of t, since there is no value of t making these minors zero simultaneously:

$$\begin{vmatrix} t & 3 \\ 2 & 6 \end{vmatrix} = 6t - 6 = 6(t - 1), \quad \begin{vmatrix} 2 & 6 \\ 3 & t \end{vmatrix} = 2t - 18 = 2(t - 9)$$

Question 8.

The characteristic equation of A is $-\lambda^3 + 14\lambda^2 - 21\lambda = 0$ since $c_1 = tr(A) = 14$, $c_2 = 7 + 7 + 7 = 21$, and $c_3 = |A| = 0$ (the third row of A is the sum of the other two rows).

Question 9.

The equilibrium state is $\mathbf{v} = (5/20, 7/20, 8/20)$ since the Markov chain is regular, and the eigenvector (5, 7, 8) is a base of the eigenspace

$$E_1 = \text{Null} \begin{pmatrix} -0.6 & 0.2 & 0.2\\ 0.4 & -0.4 & 0.1\\ 0.2 & 0.2 & -0.3 \end{pmatrix} = \text{Null} \begin{pmatrix} 2 & 2 & -3\\ -6 & 2 & 2\\ 4 & -4 & 1 \end{pmatrix} = \text{Null} \begin{pmatrix} 2 & 2 & -3\\ 0 & 8 & -7\\ 0 & -8 & 7 \end{pmatrix}$$

with $1/20 \cdot (5,7,8) = (5/20,7/20,8/20)$ as the unique state vector in E_1 since 5+7+8=20.

Question 10.

The matrix A diagonalizable when $s \neq 1$, since the eigenvalues of A is $\lambda = 3, s, 1$, and therefore A is diagonalizable for $s \neq 1, 3$. Moreover, dim $E_3 = 2 = m$ when s = 3 and dim $E_1 = 1 < m$ when s = 1 in the cases of multiplicity m = 2.

Question 11.

The rank of A is $\operatorname{rk} A = 1$ since dim $E_0 = \operatorname{dim} \operatorname{Null}(A) = 2$ and dim $\operatorname{Null}(A) = 3 - \operatorname{rk} A$.

Question 12.

The quadratic form q is positive semidefinite by the RRC since its symmetric matrix A has $D_1 = 2$, $D_2 = 7$, and $D_3 = 0$ (the last row of A is the sum of the two other rows), hence rk A = 2:

$$A = \begin{pmatrix} 2 & 1 & 3 \\ 1 & 4 & 5 \\ 3 & 5 & 8 \end{pmatrix}$$

Question 13.

The rank of A is rk A = 3 since it has an echelon form with three pivots:

$$A = \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 \end{pmatrix} \to \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Question 14.

We have dim $V = \dim \text{Null}(A) = 5 - \text{rk} A = 5 - 4 = 1$ since V = Null(A) of the matrix A of rank 4:

$$A = \begin{pmatrix} 1 & 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 2 & 1 \\ 0 & 1 & -1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 \end{pmatrix} \to \begin{pmatrix} 1 & 0 & 1 & 2 & 3 \\ 0 & 1 & -1 & 1 & 0 \\ 0 & 0 & 1 & 2 & 1 \\ 0 & 1 & 0 & -1 & -2 \end{pmatrix} \to \begin{pmatrix} 1 & 0 & 1 & 2 & 3 \\ 0 & 1 & -1 & 1 & 0 \\ 0 & 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & -4 & -3 \end{pmatrix}$$

Question 15.

The rank of A is $\operatorname{rk} A = 1$ if t = 1, and $\operatorname{rk} A = 3$ if $t \neq 1$, since A has an echelon form

$$A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & t & t^2 & t^3 \\ 1 & 1 & t & t^2 \end{pmatrix} \to \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & t - 1 & t^2 - 1 & t^3 - 1 \\ 0 & 0 & t - 1 & t^2 - 1 \end{pmatrix}$$

with marked pivots if $t \neq 1$, and just the pivot in the first row if t = 1.

Question 16.

The eigenvalues of A are $\lambda_1 = \lambda_2 = 3$ and $\lambda_3 = 7$ since the characteristic equation of A is

$$\begin{vmatrix} 5-\lambda & 0 & 2\\ 0 & 3-\lambda & 0\\ 2 & 0 & 5-\lambda \end{vmatrix} = (3-\lambda)(\lambda^2 - 10\lambda + 21) = -(\lambda - 3)(\lambda - 3)(\lambda - 7) = 0$$

Question 17.

We have that $\lambda = -1$ is an eigenvalue of A with multiplicity m = 3 since $A - \lambda I = A + I$ has rank rk(A + I) = 1:

Therefore dim $E_{-1} = 4 - 1 = 3$, and $m = \dim E_{-1} = 3$ since A is symmetric.

Question 18.

The quadratic form q is indefinite since the principal 2-minor $\Delta_2 = M_{14,14} = 0 - 1 = -1$ of the symmetric matrix A is negative:

$$A = \begin{pmatrix} 3 & 1 & 4 & -1 \\ 1 & 1 & 2 & 1 \\ 4 & 2 & 6 & 0 \\ -1 & 1 & 0 & 0 \end{pmatrix}$$

Question 19.

An orthonormal base of Null(A+2I) is given by $\{1/\sqrt{2} \cdot (-1,0,1), 1/\sqrt{6} \cdot (1,-2,1)\}$, since the vectors $\mathbf{v}_1 = (-1,0,1)$ and $\mathbf{v}_2 = (0,-1,1)$ is base of the nullspace of A+2I, which has echelon form

$$A + 2I = \begin{pmatrix} 3 & 3 & 3 \\ 3 & 3 & 3 \\ 3 & 3 & 3 \end{pmatrix} \to \begin{pmatrix} 3 & 3 & 3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

and $\mathbf{v}'_2 = \mathbf{v}_2 - \text{proj}_{\mathbf{v}_1}(\mathbf{v}_2) = (0, -1, 1) - 1/2 \cdot (-1, 0, 1) = 1/2 \cdot (1, -2, 1)$ is orthogonal to \mathbf{v}_1 .

Question 20.

The matrix A is indefinite since $det(A) = \lambda_1 \cdot \lambda_2 \cdot \lambda_3 = -6 < 0$ means that one or three of the eigenvalues are negative, and tr(A) = 4 > 0 means that not all three eigenvalues can be negative; therefore A has one negative and two positive eigenvalues.

Question 21.

The stationary point (1,1,1) is a local minimum point for f since (1,1,1) satisfies the FOC's

$$f'_x = 4x^3 - 4yz = 0, \quad f_y = 4y^3 - 4xz = 0, \quad f'_z = 4z^3 - 4xy = 0$$

and the Hessian at (1, 1, 1) is positive definite with $D_1 = 12$, $D_2 = 128$, and $D_3 = 1024$:

$$H(f)(1,1,1) = \begin{pmatrix} 12 & -4 & -4 \\ -4 & 12 & -4 \\ -4 & -4 & 12 \end{pmatrix}$$

Question 22.

We have that f is convex if $a \ge 0$ and concave if $a \le 0$ since $H(f) = -a \cdot H(g)$ and H(g) is negative semidefinite. This means that H(f) is positive semidefinite when $a \ge 0$, and negative semidefinite when $a \le 0$.