Exam Mock Midterm exam in GRA 6035 Mathematics
 Date October 9th, 2020 at 1300-1400

Question 1.

Consider the linear system with augmented matrix

$$
\left(\begin{array}{llll|r}
0 & 0 & 3 & 1 & 4 \\
0 & 0 & 1 & 5 & 7 \\
1 & 1 & 0 & 5 & 13 \\
4 & 0 & 0 & 1 & 5
\end{array}\right)
$$

Which statement is true?
(a) The linear system has a unique solution
(b) The linear system is inconsistent
(c) The linear system has one degree of freedom
(d) The linear system has two degrees of freedom
(e) I prefer not to answer.

Question 2.

Consider the matrix

$$
A=\left(\begin{array}{ccc}
1 & t & -t \\
5 & -t & t \\
4 & 2 & 0
\end{array}\right)
$$

Which statement is true?

(a) $\operatorname{rk} A=3$ for all values of t
(b) $\operatorname{rk} A=2$ for a unique value of t, otherwise $\mathrm{rk} A=3$
(c) $\operatorname{rk} A=1$ for a unique value of t, otherwise $\mathrm{rk} A=3$
(d) $\operatorname{rk} A<3$ for two different values of t
(e) I prefer not to answer.

Question 3.

Let $V=\operatorname{Col}(A)$ and let \mathbf{v}_{i} be the i^{\prime} th column vector of A for $i=1,2,3,4$ when

$$
A=\left(\begin{array}{llll}
3 & 1 & 7 & 0 \\
2 & 0 & 5 & 8 \\
3 & 5 & 5 & 2
\end{array}\right)
$$

Which statement is true?
(a) $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}\right\}$ is a base of V
(b) $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}\right\}$ are linearly independent, but is not a base of V
(c) $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is a base of V, and \mathbf{v}_{4} is a linear combination of $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{4}\right\}$.
(d) $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{4}\right\}$ is a base of V, and \mathbf{v}_{3} is a linear combination of $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{4}\right\}$.
(e) I prefer not to answer.

Question 4.

Consider the quadratic form $f(x, y, z)=x^{2}+4 x y-2 x z+5 y^{2}-4 y z+z^{2}$. Which statement is true?
(a) f is indefinite
(b) f is negative semi-definite but not negative definite
(c) f is positive semi-definite but not positive definite
(d) f is positive definite
(e) I prefer not to answer.

Question 5.

Consider the matrix

$$
A=\left(\begin{array}{lll}
0 & 0 & 2 \\
4 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
$$

Which statement is true?

(a) A has three distinct eigenvalues
(b) A has an eigenvalue of multiplicity two, and another eigenvalue of multiplicity one
(c) A has an eigenvalue of multiplicity three
(d) A has one eigenvalues of multiplicity one, and no other eigenvalues
(e) I prefer not to answer.

Question 6.

Consider the function $f(x, y)=2 x^{3}+x y^{2}+5 x^{2}+y^{2}$. Which statement is true?
(a) The function f has both a local minimum and a local maximum point.
(b) The function f has a local minimum but no local maximum point.
(c) The function f has a local maximum but no local minimum point.
(d) All stationary points of f are saddle points.
(e) I prefer not to answer.

Question 7.

Consider the function $f(x, y, z)=x^{2}+4 x y-2 x z+5 y^{2}-4 y z+h z^{2}+z^{4}$ with parameter h. Which statement is true?
(a) f is convex for all values of h
(b) f is convex for $h \geq 0$
(c) f is convex for $h \geq 1$
(d) f is not convex for any value of h
(e) I prefer not to answer.

Question 8.

Consider the matrix

$$
A=\left(\begin{array}{ccc}
0 & 0 & 2 \\
4 & 0 & 0 \\
0 & s^{3} & 0
\end{array}\right)
$$

Which statement is true?

(a) A is diagonalizable for all values of s
(b) A is diagonalizable for $s=0$, but not for $s \neq 0$
(c) A is diagonalizable for $s \neq 0$, but not for $s=0$
(d) A is not diagonalizable for any value of s
(e) I prefer not to answer.

