Solutions Mock Midterm exam in GRA 6035 Mathematics Date October 9th, 2020 at 1300-1400

Correct answers: A-B-D-C D-A-C-D

Question 1.

We find the pivot positions in A, given by the Gaussian process

$$
\left(\begin{array}{llll|r}
0 & 0 & 3 & 1 & 4 \\
0 & 0 & 1 & 5 & 7 \\
1 & 1 & 0 & 5 & 13 \\
4 & 0 & 0 & 1 & 5
\end{array}\right) \quad \rightarrow \quad\left(\begin{array}{rrrr|r}
1 & 1 & 0 & 5 & 13 \\
0 & -4 & 0 & -19 & -47 \\
0 & 0 & 1 & 5 & 7 \\
0 & 0 & 0 & -14 & -17
\end{array}\right)
$$

Hence there is a unique solution. The correct answer is alternative \mathbf{A}.

Question 2

We compute the determinant of A to find out when $\mathrm{rk} A$ is maximal:

$$
\left|\begin{array}{ccc}
1 & t & -t \\
5 & -t & t \\
4 & 2 & 0
\end{array}\right|=4\left(t^{2}-t^{2}\right)-2(t+5 t)=-12 t
$$

Hence $\operatorname{rk} A=3$ when $t \neq 0$. When $t=0$, the 2 -minor $M_{23,12}=10+4 t=10 \neq 0$, and $\operatorname{rk} A=2$. The correct answer is alternative \mathbf{B}.

Question 3.

We find the pivot positions of A using the Gaussian process

$$
\left(\begin{array}{llll}
3 & 1 & 7 & 0 \\
2 & 0 & 5 & 8 \\
3 & 5 & 5 & 2
\end{array}\right) \quad \rightarrow \quad\left(\begin{array}{cccc}
3 & 1 & 7 & 0 \\
0 & -2 & 1 & 24 \\
0 & 0 & 0 & 50
\end{array}\right)
$$

Hence $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{4}\right\}$ is a base of V, and \mathbf{v}_{3} is a linear combination of the vectors in this base. The correct answer is alternative \mathbf{D}.

Question 4.

The symmetric matrix of the quadratic form $f(x, y, z)=x^{2}+4 x y-2 x z+5 y^{2}-4 y z+z^{2}$ is given by

$$
A=\left(\begin{array}{ccc}
1 & 2 & -1 \\
2 & 5 & -2 \\
-1 & -2 & 1
\end{array}\right)
$$

The leading principal minors are $D_{1}=1, D_{2}=5-4=1, D_{3}=-1(1)+2(0)+1(1)=0$. Since A has $\operatorname{rk} A=2$, it follows by the reduced rank criterion that A and f are positive semidefinite, but not positive definite. The correct answer is alternative \mathbf{C}.

Question 5.

We compute the eigenvalues of A by solving the characteristic equations $\operatorname{det}(A-\lambda I)=0$, which gives

$$
\left|\begin{array}{ccc}
-\lambda & 0 & 2 \\
4 & -\lambda & 0 \\
0 & 1 & -\lambda
\end{array}\right|=0
$$

We compute the determinant by cofactor expansion along the third column, which gives

$$
2(4)-\lambda\left(\lambda^{2}\right)=0 \quad \Rightarrow \quad \lambda^{3}=8
$$

Hence $\lambda=\sqrt[3]{8}=2$ is the unique real eigenvalue. In fact, we have $\lambda^{3}-8=(\lambda-2)\left(\lambda^{2}+2 \lambda+4\right)$, and the quadratic factor has no (real) zeros. The correct answer is alternative \mathbf{D}.

Question 6.

The function $f(x, y)=2 x^{3}+x y^{2}+5 x^{2}+y^{2}$ has first order partial derivatives and first order conditions given by

$$
f_{x}^{\prime}=6 x^{2}+y^{2}+10 x=0, \quad f_{y}^{\prime}=2 x y+2 y=0
$$

From the second equation we get $2 y(x+1)=0$, so $y=0$ or $x=-1$. In the first case, we get $6 x^{2}+10 x=0$ from the first equation, and $x=0$ or $x=-5 / 3$. In the second case, we get $y^{2}-4=0$, or $y= \pm 2$. There are therefore four stationary points $(0,0),(-5 / 3,0),(-1, \pm 2)$. The Hessian matrix at the first two points are given by

$$
H(f)=\left(\begin{array}{cc}
12 x+10 & 2 y \\
2 y & 2 x+2
\end{array}\right) \quad \Rightarrow \quad H(f)(0,0)=\left(\begin{array}{cc}
10 & 0 \\
0 & 2
\end{array}\right), \quad H(f)(-5 / 3,0)=\left(\begin{array}{cc}
-10 & 0 \\
0 & -4 / 3
\end{array}\right)
$$

This means that $(0,0)$ is a local min and $(-5 / 3,0)$ is a local max. We could also check the last two stationary points, which are saddle points, but it is not necessary to answer the question. The correct answer is alternative \mathbf{A}.

Question 7.

The Hessian matrix of the function $f(x, y, z)=x^{2}+4 x y-2 x z+5 y^{2}-4 y z+h z^{2}+z^{4}$ is given by

$$
H(f)=\left(\begin{array}{ccc}
2 & 4 & -2 \\
4 & 10 & -4 \\
-2 & -4 & 2 h+12 z^{2}
\end{array}\right)
$$

The leading principal minors are $D_{1}=2, D_{2}=20-16=4, D_{3}=-2(4)+4(0)+\left(2 h+12 z^{2}\right)(4)$, which gives $D_{3}=48 z^{2}+8 h-8$. When $h \geq 1, H(f)$ is positive semidefinite for all (x, y, z) since $D_{1}, D_{2}>0$ and $D_{3} \geq 0$ (we use the RRC in case $D_{3}=0$). When $h<1, D_{3}<0$ when $z=0$ so the matrix is indefinite. This means that f is convex for $h \geq 1$ but not for $h<1$. The correct answer is alternative \mathbf{C}.

Question 8.

We compute the eigenvalues of A by solving the characteristic equations $\operatorname{det}(A-\lambda I)=0$, which gives

$$
\left|\begin{array}{ccc}
-\lambda & 0 & 2 \\
4 & -\lambda & 0 \\
0 & s^{3} & -\lambda
\end{array}\right|=0
$$

We compute the determinant by cofactor expansion along the third column, which gives

$$
2\left(4 s^{3}\right)-\lambda\left(\lambda^{2}\right)=0 \quad \Rightarrow \quad 8 s^{3}-\lambda^{3}=0
$$

Hence $\lambda=\sqrt[3]{8 s^{3}}=2 s$ is one solution, and polynomial division gives

$$
\lambda^{3}-8 s^{3}=(\lambda-2 s)\left(\lambda^{2}+2 s \lambda+4 s^{2}\right)
$$

Since the quadratic factor can be written $(\lambda+s)^{2}+3 s^{2}$, it has no (real) zeros when $s \neq 0$. Hence, there is only one eigenvalue $\lambda=2 s$ of multiplicity one in case $s \neq 0$, and A is not diagonalizable. In the case $s=0$, we get $\lambda^{3}=0$, so $\lambda=0$ is an eigenvalue of multiplicity 3 . But rk $A=2$ in this case, so A is not diagonalizable for $s=0$ either. The correct answer is alternative \mathbf{D}.

