$$
\begin{array}{ll}
\text { Exam } & \text { Midterm exam in GRA } 6035 \text { Mathematics } \\
\text { Date } & \text { January 9th, } 2023 \text { at } 1700-1800
\end{array}
$$

This exam consists of 8 problems with score $0-3$ p each, and maximal score on this exam is 24 p. You must give reasons for your answers.

Question 1.

Determine the dimension of the column space of the matrix A :

$$
A=\left(\begin{array}{llll}
1 & 1 & 2 & 1 \\
1 & 2 & 3 & 1 \\
2 & 3 & 5 & 4
\end{array}\right)
$$

Question 2.

Write \mathbf{v}_{1} as a linear combination of $\mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}$:

$$
\mathbf{v}_{1}=\left(\begin{array}{l}
1 \\
1 \\
2
\end{array}\right), \quad \mathbf{v}_{2}=\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right), \quad \mathbf{v}_{3}=\left(\begin{array}{l}
2 \\
3 \\
5
\end{array}\right), \quad \mathbf{v}_{4}=\left(\begin{array}{l}
1 \\
1 \\
4
\end{array}\right)
$$

Question 3.

Determine all values of s such that the matrix A has maximal rank:

$$
A=\left(\begin{array}{lll}
3 & s & 1 \\
1 & 1 & s \\
4 & 3 & 3
\end{array}\right)
$$

Question 4.

Determine the equilibrium state of the Markov chain with transition matrix A :

$$
A=\left(\begin{array}{ll}
0.58 & 0.06 \\
0.42 & 0.94
\end{array}\right)
$$

Question 5.

Determine the definiteness of the quadratic form $q(x, y, z)=-x^{2}+4 x y+2 x z-3 y^{2}-4 y z-z^{2}$.

Question 6.

Determine λ such that the vector \mathbf{v} is in the eigenspace E_{λ} of A :

$$
A=\left(\begin{array}{cccc}
2 & 3 & -1 & 0 \\
3 & 2 & 0 & -2 \\
-1 & 0 & 3 & 1 \\
0 & -2 & 1 & 3
\end{array}\right), \quad \mathbf{v}=\left(\begin{array}{l}
1 \\
1 \\
2 \\
1
\end{array}\right)
$$

Question 7.

Determine whether the function $f(x, y, z)=x^{4}+2 x^{2}+3 y^{2}-6 x z+6 z^{2}$ is convex or concave.

Question 8.

Find two linearly independent vectors that are orthogonal to (1,3,2).

