Solutions	Midterm exam in GRA 6035 Mathematics
Date	January 9th, 2023 at 1700-1800

Question 1.

We have $\operatorname{dim} \operatorname{Col}(A)=\operatorname{rk}(A)=3$ since A has an echelon form with three pivots:

$$
A=\left(\begin{array}{llll}
1 & 1 & 2 & 1 \\
1 & 2 & 3 & 1 \\
2 & 3 & 5 & 4
\end{array}\right) \rightarrow\left(\begin{array}{llll}
1 & 1 & 2 & 1 \\
0 & 1 & 1 & 0 \\
0 & 1 & 1 & 2
\end{array}\right) \rightarrow\left(\begin{array}{llll}
1 & 1 & 2 & 1 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 2
\end{array}\right)
$$

Question 2.

We use the echelon form in Question 1 to find a base of $\operatorname{Null}(A)$: We find that $2 w=0$, or $w=0$, that z is free, that $y+z=0$, or $y=-z$, and that $x+y+2 z+w=0$, or $x=-y-2 z-w=z-2 z=-z$. Hence $(x, y, z, w)=(-z,-z, z, 0)=z(-1,-1,1,0)$ is in $\operatorname{Null}(A)$, and $(-1,-1,1,0)$ is a base. Hence $-\mathbf{v}_{1}-\mathbf{v}_{2}+\mathbf{v}_{3}=0$, and this gives that $\mathbf{v}_{1}=-\mathbf{v}_{2}+\mathbf{v}_{3}$.

Question 3.

The rank of A is maximal for $s \neq 1, s \neq 2 \operatorname{since} \operatorname{rk}(A)<3$ if and only if

$$
|A|=\left|\begin{array}{ccc}
3 & s & 1 \\
1 & 1 & s \\
4 & 3 & 3
\end{array}\right|=4\left(s^{2}-1\right)-3(3 s-1)+3(3-s)=4 s^{2}-12 s+8=4(s-1)(s-2)=0
$$

Question 4.

The equilibrium state is $\mathbf{v}=(1 / 8,7 / 8)$ since the Markov chain is regular, and the eigenvector $(1,7)$ is a base of the eigenspace

$$
E_{1}=\operatorname{Null}\left(\begin{array}{cc}
-0.42 & 0.06 \\
0.42 & -0.06
\end{array}\right)=\operatorname{Null}\left(\begin{array}{cc}
-7 & 1 \\
0 & 0
\end{array}\right)
$$

with $1 / 8 \cdot(1,7)=(1 / 8,7 / 8)$ as the unique state vector in E_{1}.

Question 5.

The quadratic form q is indefinite since its symmetric matrix A has $D_{2}=3-4=-1<0$:

$$
A=\left(\begin{array}{ccc}
-1 & 2 & 1 \\
2 & -3 & -2 \\
1 & -2 & -1
\end{array}\right)
$$

Question 6.

We have that \mathbf{v} is in E_{3} since $A \cdot \mathbf{v}=3 \mathbf{v}$, hence $\lambda=3$.

Question 7.

The Hessian matrix $H(f)$ has leading principal minors $D_{1}=12 x^{2}+4>0, D_{2}=6\left(12 x^{2}+4\right)>0$ and $D_{3}=6\left(12\left(12 x^{2}+4\right)-(-6)^{2}\right)=6\left(144 x^{2}+12\right)>0$ since $H(f)$ is given by

$$
H(f)=\left(\begin{array}{ccc}
12 x^{2}+4 & 0 & -6 \\
0 & 6 & 0 \\
-6 & 0 & 12
\end{array}\right)
$$

The Hessian $H(f)$ is therefore positive definite for all (x, y, z), hence f is convex (but not concave).

Question 8.

A vector $\mathbf{v}=(x, y, z)$ is orthogonal to $(1,3,2)$ if and only if $(x, y, z) \cdot(1,3,2)=0$, or $x+3 y+2 z=0$. We find two linearly independent solutions by taking y, z as free variables and solving for $x=-3 y-2 z$. This gives $(x, y, z)=(-3 y-2 z, y, z)=y(-3,1,0)+z(-2,0,1)$. We may choose $\mathbf{w}_{1}=(-3,1,0)$ and $\mathbf{w}_{2}=(-2,0,1)$.

