This exam consists of 8 problems with score $0-3$ p each, and maximal score on this exam is 24 p . You must give reasons for your answers.

Question 1.

Determine the dimension of the null space of the matrix A :

$$
A=\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 2 & 1 & 2
\end{array}\right)
$$

Question 2.

Write \mathbf{v}_{4} as a linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$:

$$
\mathbf{v}_{1}=\left(\begin{array}{l}
1 \\
0 \\
2
\end{array}\right), \quad \mathbf{v}_{2}=\left(\begin{array}{l}
2 \\
3 \\
1
\end{array}\right), \quad \mathbf{v}_{3}=\left(\begin{array}{l}
4 \\
1 \\
1
\end{array}\right), \quad \mathbf{v}_{4}=\left(\begin{array}{l}
5 \\
4 \\
0
\end{array}\right),
$$

Question 3.

Determine all values of t such that the matrix A has maximal rank:

$$
A=\left(\begin{array}{ccc}
1 & 1 & t \\
t & 3 & 1 \\
3 & 4 & 3
\end{array}\right)
$$

Question 4.

Determine the equilibrium state of the Markov chain with transition matrix A :

$$
A=\left(\begin{array}{ll}
0.72 & 0.07 \\
0.28 & 0.93
\end{array}\right)
$$

Question 5.

Determine the definiteness of the quadratic form $q(x, y, z)=-x^{2}+4 x y+2 x z-4 y^{2}-4 y z-z^{2}$.

Question 6.

Determine the dimension of the eigenspace E_{λ} of A which contains the vector \mathbf{v} :

$$
A=\left(\begin{array}{cccc}
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
1 & 0 & 0 & 1
\end{array}\right), \quad \mathbf{v}=\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right)
$$

Question 7.

Determine the scalar a such that $\mathbf{v}-a \cdot \mathbf{w}$ is orthogonal to \mathbf{w} when $\mathbf{v}=(1,0,4,3)$ and $\mathbf{w}=(1,1,1,7)$.

Question 8.

The points $(1,1,3,4)$ and $(0,3,1,2)$ are solutions of a 3×4 linear system $A \mathbf{x}=\mathbf{b}$, where the minor $M_{123,124}=2$. Determine all solutions of the linear system of the form $(x, y, z, 0)$.

