Solutions	Midterm exam in GRA 6035 Mathematics
Date	October 14th, 2022 at 0900-1000

Question 1.

We have $\operatorname{dim} \operatorname{Null}(A)=n-\operatorname{rk}(A)=4-2=2$ since A has an echelon form with two pivots:

$$
A=\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 2 & 1 & 2
\end{array}\right) \rightarrow\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1
\end{array}\right)
$$

Question 2.

We can write $\mathbf{v}_{4}=-\mathbf{v}_{1}+\mathbf{v}_{2}+\mathbf{v}_{3}$ since Gaussian elimination gives

$$
\left(\begin{array}{ccc|c}
1 & 2 & 4 & 5 \\
0 & 3 & 1 & 4 \\
2 & 1 & 1 & 0
\end{array}\right) \rightarrow\left(\begin{array}{ccc|c}
1 & 2 & 4 & 5 \\
0 & 3 & 1 & 4 \\
0 & -3 & -7 & -10
\end{array}\right) \rightarrow\left(\begin{array}{ccc|c}
1 & 2 & 4 & 5 \\
0 & 3 & 1 & 4 \\
0 & 0 & -6 & -6
\end{array}\right)
$$

and the unique solution is $(-1,1,1)$ by back substitution.

Question 3.

The rank of A is maximal for $t \neq 1, t \neq 2$ since $\operatorname{rk}(A)<3$ if and only if

$$
|A|=\left|\begin{array}{lll}
1 & 1 & t \\
t & 3 & 1 \\
3 & 4 & 3
\end{array}\right|=1(5)-1(3 t-3)+t(4 t-9)=4 t^{2}-12 t+8=4(t-1)(t-2)=0
$$

Question 4.

The equilibrium state is $\mathbf{v}=(1 / 5,4 / 5)$ since the Markov chain is regular, and the eigenvector $(1,4)$ is a base of the eigenspace

$$
E_{1}=\operatorname{Null}\left(\begin{array}{cc}
-0.28 & 0.07 \\
0.28 & -0.07
\end{array}\right)=\operatorname{Null}\left(\begin{array}{cc}
-4 & 1 \\
0 & 0
\end{array}\right)
$$

with $1 / 5 \cdot(1,4)=(1 / 5,4 / 5)$ as the unique state vector in E_{1}.

Question 5.

The quadratic form q is negative semidefinite by the RRC since its symmetric matrix A has $\mathrm{rk} A=1$ and $D_{1}=-1<0$:

$$
A=\left(\begin{array}{ccc}
-1 & 2 & 1 \\
2 & -4 & -2 \\
1 & -2 & -1
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
-1 & 2 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Question 6.

We have that \mathbf{v} is in E_{2} since $A \cdot \mathbf{v}=2 \mathbf{v}$, and $\operatorname{dim} E_{2}=\operatorname{dim} \operatorname{Null}(A-2 I)=n-\operatorname{rk}(A-2 I)=4-3=1$ since $A-2 I$ has an echelon form form with three pivots:

$$
A-2 I=\left(\begin{array}{cccc}
-1 & 1 & 0 & 0 \\
0 & -1 & 1 & 0 \\
0 & 0 & -1 & 1 \\
1 & 0 & 0 & -1
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
-1 & 1 & 0 & 0 \\
0 & -1 & 1 & 0 \\
0 & 0 & -1 & 1 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Question 7.

The scalar $a=1 / 2$ since $\mathbf{v}-\operatorname{proj}_{\mathbf{w}}(\mathbf{v})$ is orthogonal to \mathbf{w} and the projection is given by

$$
\operatorname{proj}_{\mathbf{w}}(\mathbf{v})=\frac{\mathbf{v} \cdot \mathbf{w}}{\mathbf{w} \cdot \mathbf{w}} \cdot \mathbf{w}=\frac{26}{52} \cdot(1,1,1,7)=\frac{1}{2} \cdot w
$$

Question 8.

The point $(-1,5,-1,0)$ is the unique solution of the linear system with $w=0$: The 3×4 linear system has one degree of freedom since $M_{123,124} \neq 0$, hence the solutions are the points on the line

$$
(x, y, z, w)=(1,1,3,4)+t(-1,2,-2,-2)=(1-t, 1+2 t, 3-2 t, 4-2 t)
$$

Moreover, $w=0$ gives $t=2$, and the point is $(-1,5,-1,0)$.

