Exam Midterm exam in GRA 6035 Mathematics

Date April 28th, 2022 at 1700-1800

Question 1.

Consider the linear system with augmented matrix

$$
\left(\begin{array}{cccc|c}
1 & 0 & 7 & 1 & 13 \\
3 & 2 & 0 & 2 & 3 \\
7 & 4 & 7 & 5 & 19
\end{array}\right)
$$

Which statement is true?

(a) The linear system is inconsistent
(b) The linear system has a unique solution
(c) The linear system has one degree of freedom
(d) The linear system has two degrees of freedom
(e) I prefer not to answer

Question 2.

We consider the three column vectors of the matrix

$$
A=\left(\begin{array}{lll}
1 & 2 & 5 \\
1 & 1 & 4 \\
2 & 0 & 6 \\
1 & 3 & a
\end{array}\right)
$$

Which statement is true?

(a) The vectors are linearly independent for all values of a
(b) The vectors are linearly independent if and only if $a=6$
(c) The vectors are linearly dependent if and only if $a=6$
(d) The vectors are linearly dependent for all values of a
(e) I prefer not to answer

Question 3.

Consider the matrix

$$
A=\left(\begin{array}{lll}
1 & 0 & 3 \\
0 & 2 & 0 \\
3 & 0 & 1
\end{array}\right)
$$

Which statement is true?

(a) A has three distinct eigenvalues
(b) A has an eigenvalue of multiplicity two, and another eigenvalue of multiplicity one
(c) A has an eigenvalue of multiplicity three
(d) A has one eigenvalue of multiplicity one, and no other eigenvalues
(e) I prefer not to answer

Question 4.

Consider the quadratic form $f(x, y, z)=3 x^{2}+8 x y+2 x z+6 y^{2}+4 y z$. Which statement is true?
(a) f is positive definite
(b) f is positive semi-definite but not positive definite
(c) f is negative semi-definite but not negative definite
(d) f is indefinite
(e) I prefer not to answer

Question 5.

A Markov chain $\mathbf{x}_{t+1}=A \mathbf{x}_{t}$ has transition matrix A given by

$$
A=\left(\begin{array}{lll}
0.50 & 0.30 & 0.00 \\
0.00 & 0.70 & 0.50 \\
0.50 & 0.00 & 0.50
\end{array}\right)
$$

Which statement is true?

(a) There is an equilibrium state (x, y, z) with $y<0.25$
(b) There is an equilibrium state (x, y, z) with $0.25 \leq y<0.50$
(c) There is an equilibrium state (x, y, z) with $0.50 \leq y$
(d) The Markov chain is not regular
(e) I prefer not to answer.

Question 6.

Consider the function $f(x, y, z)=3 x^{2}+8 x y+2 x z+6 y^{2}+4 y z+z^{2}$. Which statement is true?
(a) f does not have any stationary points
(b) f has a saddle point
(c) f has a local minimum but not a global minimum
(d) f has a global minimum
(e) I prefer not to answer

Question 7.

Consider the matrix A given by

$$
A=\left(\begin{array}{ccccc}
1 & 2 & -5 & 0 & -1 \\
2 & 5 & -8 & 4 & 3 \\
-3 & -9 & a & -7 & -2 \\
3 & 10 & -7 & 16 & 7
\end{array}\right)
$$

Which statement is true?

(a) $\operatorname{rk} A=3$
(b) $\operatorname{rk} A=3$ when $a=9$, otherwise $\operatorname{rk} A=4$
(c) $\operatorname{rk} A=2$ when $a=9$, otherwise $\operatorname{rk} A=4$
(d) $\operatorname{rk} A=4$
(e) I prefer not to answer.

Question 8.

Let A be a 4×4 matrix with characteristic equation $\lambda^{4}-3 \lambda^{2}=0$ such that A is not diagonalizable. Which statement is true?
(a) $\operatorname{rk} A=1$
(b) $\operatorname{rk} A=2$
(c) $\operatorname{rk} A=3$
(d) It is impossible to determine $\mathrm{rk} A$ from the given information.
(e) I prefer not to answer

