```
Solutions Midterm exam in GRA 6035 Mathematics
Date April 28th, 2022 at 1700-1800
```


Correct answers: D-C-A-D B-D-D-C

Question 1.

We find the pivot positions in A using the Gaussian process

$$
\left(\begin{array}{cccc|c}
1 & 0 & 7 & 1 & 13 \\
3 & 2 & 0 & 2 & 3 \\
7 & 4 & 7 & 5 & 19
\end{array}\right) \rightarrow\left(\begin{array}{cccc|c}
1 & 0 & 7 & 1 & 13 \\
0 & 2 & -21 & -1 & -36 \\
0 & 4 & -42 & -2 & -72
\end{array}\right) \rightarrow\left(\begin{array}{cccc|c}
1 & 0 & 7 & 1 & 13 \\
0 & 2 & -21 & -1 & -36 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

From the pivot positions, we see that there are two degrees of freedom. The correct answer is alternative \mathbf{D}.

Question 2.

We find the pivot positions in A using the Gaussian process

$$
\left(\begin{array}{lll}
1 & 2 & 5 \\
1 & 1 & 4 \\
2 & 0 & 6 \\
1 & 3 & a
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
1 & 2 & 5 \\
0 & -1 & -1 \\
0 & -4 & -4 \\
0 & 1 & a-5
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
1 & 2 & 5 \\
0 & -1 & -1 \\
0 & 0 & a-6 \\
0 & 0 & 0
\end{array}\right)
$$

This shows that the column vectors of A are linearly dependent for $a=6$, and linearly independent for all other values of a. The correct answer is alternative \mathbf{C}.

Question 3.

We compute the eigenvalues of A by solving the characteristic equations $\operatorname{det}(A-\lambda I)=0$, which gives

$$
\left|\begin{array}{ccc}
1-\lambda & 0 & 3 \\
0 & 2-\lambda & 0 \\
3 & 0 & 1-\lambda
\end{array}\right|=0
$$

We compute the determinant by cofactor expansion along the second row, which gives

$$
(2-\lambda) \cdot\left|\begin{array}{cc}
1-\lambda & 3 \\
3 & 1-\lambda
\end{array}\right|=(2-\lambda)\left(\lambda^{2}-2 \lambda-8\right)
$$

Since $\lambda^{2}-2 \lambda-8=0$ has roots $\lambda=-2$ and $\lambda=4, A$ has three eigenvalues of multiplicity one. The correct answer is alternative A.

Question 4.

The symmetric matrix of the quadratic form f is given by

$$
A=\left(\begin{array}{lll}
3 & 4 & 1 \\
4 & 6 & 2 \\
1 & 2 & 0
\end{array}\right)
$$

Since $D_{1}=3, D_{2}=18-16=2$, and $D_{3}=1(8-6)-2(6-4)=-2, A$ is indefinite. The correct answer is alternative \mathbf{D}.

Question 5.

The Markov chains is regular since its graphs has a path from any state to any other state of length 2; that is, A^{2} is a positive matrix. The eigenvectors for $\lambda=1$ are given by the linear system $(A-I) \mathbf{x}=\mathbf{0}$, and an echelon form of the coefficient matris is given by

$$
A-I=\left(\begin{array}{ccc}
-0.5 & 0.3 & 0 \\
0 & -0.3 & 0.5 \\
0.5 & 0 & -0.5
\end{array}\right) \quad \rightarrow \quad\left(\begin{array}{ccc}
-0.5 & 0.3 & 0 \\
0 & -0.3 & 0.5 \\
0 & 0 & 0
\end{array}\right)
$$

Therefore, we see that $(3,5,3)$ is an eigenvector in E_{1}, and all others are multiples of this vector. Multiplication by $1 / 11$ gives the state vector $(x, y, z)=(3 / 11,5 / 11,3 / 11)$. The correct answer is alternative \mathbf{B}.

Question 6.

Since f is a quadratic form, $\mathbf{x}=(0,0,0)$ is a stationary point. The symmetric matrix of f is given by

$$
A=\left(\begin{array}{lll}
3 & 4 & 1 \\
4 & 6 & 2 \\
1 & 2 & 1
\end{array}\right)
$$

Since $D_{1}=3, D_{2}=18-16=2, D_{3}=1(8-6)-2(6-4)+1(2)=0, A$ is positive semidefinite but not positive definite by the RRC. It follows that f is convex, and therefore has a global minimum point $\mathbf{x}=(0,0,0)$. The correct answer is alternative \mathbf{D}.

Question 7.

We compute an echelon form of A using elementary row operations, and get
$A=\left(\begin{array}{ccccc}1 & 2 & -5 & 0 & -1 \\ 2 & 5 & -8 & 4 & 3 \\ -3 & -9 & a & -7 & -2 \\ 3 & 10 & -7 & 16 & 7\end{array}\right) \quad \rightarrow\left(\begin{array}{ccccc}1 & 2 & -5 & 0 & -1 \\ 0 & 1 & 2 & 4 & 5 \\ 0 & -3 & a-15 & -7 & -5 \\ 0 & 4 & 8 & 16 & 10\end{array}\right) \quad \rightarrow\left(\begin{array}{ccccc}1 & 2 & -5 & 0 & -1 \\ 0 & 1 & 2 & 4 & 5 \\ 0 & 0 & a-9 & 5 & 10 \\ 0 & 0 & 0 & 0 & -10\end{array}\right)$
Hence A has rank 4, with the pivot in the third row in the third column if $a \neq 9$, and in the third column if $a=9$. The correct answer is alternative \mathbf{D}.

Question 8.

The characteristic equation can be written $\lambda^{2}(\lambda+\sqrt{3})(\lambda-\sqrt{3})=0$, and $\lambda=0$ has multiplicity 2 . Since $1 \leq \operatorname{dim} E_{0} \leq 2$, and A is diagonalizable if $\operatorname{dim} E_{0}=2$, we must have $\operatorname{dim} E_{0}=1$. This means that $\operatorname{rk} A=4-\operatorname{dim} E_{0}=3$. The correct answer is alternative \mathbf{C}.

