$$
\begin{array}{ll}
\text { Exam } & \text { Midterm exam in GRA } 6035 \text { Mathematics } \\
\text { Date } & \text { January 27th, } 2022 \text { at } 1700-1800
\end{array}
$$

## Question 1.

Consider the linear system with augmented matrix

$$
\left(\begin{array}{cccc|c}
1 & 1 & 1 & 1 & 4 \\
2 & -1 & 3 & 0 & 1 \\
3 & 0 & 4 & 1 & 4
\end{array}\right)
$$

## Which statement is true?

(a) The linear system is inconsistent
(b) The linear system has a unique solution
(c) The linear system has one degree of freedom
(d) The linear system has two degrees of freedom
(e) I prefer not to answer

## Question 2.

We consider the four column vectors of the matrix

$$
A=\left(\begin{array}{llll}
1 & 1 & 2 & 1 \\
2 & 1 & 0 & 3 \\
5 & 4 & 6 & a
\end{array}\right)
$$

## Which statement is true?

(a) The vectors are linearly independent for all values of $a$
(b) The vectors are linearly independent if and only if $a=6$
(c) The vectors are linearly dependent if and only if $a=6$
(d) The vectors are linearly dependent for all values of $a$
(e) I prefer not to answer

## Question 3.

Consider the matrix

$$
A=\left(\begin{array}{lll}
2 & 1 & 0 \\
1 & 2 & 0 \\
0 & 0 & 3
\end{array}\right)
$$

## Which statement is true?

(a) $A$ has three distinct eigenvalues
(b) $A$ has an eigenvalue of multiplicity two, and another eigenvalue of multiplicity one
(c) $A$ has an eigenvalue of multiplicity three
(d) $A$ has one eigenvalue of multiplicity one, and no other eigenvalues
(e) I prefer not to answer

## Question 4.

A Markov chain $\mathbf{x}_{t+1}=A \mathbf{x}_{t}$ has transition matrix $A$ given by

$$
A=\left(\begin{array}{ll}
0.56 & 0.22 \\
0.44 & 0.78
\end{array}\right)
$$

and equilibrium state $\mathbf{x}=(x, y)$. Which statement is true?
(a) $y<0.25$
(b) $0.25 \leq y<0.50$
(c) $0.50 \leq y<0.75$
(d) $y \geq 0.75$
(e) I prefer not to answer.

## Question 5.

Consider the matrix $A$ given by

$$
A=\left(\begin{array}{lll}
2 & 0 & 1 \\
0 & s & 2 \\
1 & 0 & 2
\end{array}\right)
$$

## Which statement is true?

(a) $A$ is not diagonalizable for any value of $s$
(b) $A$ is diagonalizable if and only if $s \neq 1$ and $s \neq 3$
(c) $A$ is diagonalizable if and only if $s \neq 3$
(d) $A$ is diagonalizable for all values of $s$
(e) I prefer not to answer.

## Question 6.

Consider the quadratic form

$$
f(x, y, z, w)=3 x^{2}+2 x y+8 x z-2 x w+y^{2}+4 y z+2 y w+7 z^{2}+4 w^{2}
$$

## Which statement is true?

(a) $f$ is positive definite
(b) $f$ is positive semi-definite but not positive definite
(c) $f$ is negative semi-definite but not negative definite
(d) $f$ is indefinite
(e) I prefer not to answer

## Question 7.

Consider the function

$$
f(x, y, z)=3 x^{2}+2 x y+8 x z+y^{2}+4 y z+7 z^{2}
$$

## Which statement is true?

(a) $f$ does not have any stationary points
(b) $f$ has a saddle point
(c) $f$ has a local minimum but not a global minimum
(d) $f$ has a global minimum
(e) I prefer not to answer

## Question 8.

Let $A$ be a symmetric $3 \times 3$ matrix such that $|A|=-6$ and $\operatorname{tr}(A)=4$. Which statement is true?
(a) $A$ is positive definite
(b) $A$ is negative definite
(c) $A$ is indefinite
(d) It is not possible to determine the definiteness of $A$ based on the given information
(e) I prefer not to answer

