```
Solutions Midterm exam in GRA 6035 Mathematics
Date January 27th, 2022 at 1700-1800
```


Correct answers: A-D-B-C B-A-D-C

Question 1.

We find the pivot positions in A using the Gaussian process

$$
\left(\begin{array}{cccc|c}
1 & 1 & 1 & 1 & 4 \\
2 & -1 & 3 & 0 & 1 \\
3 & 0 & 4 & 1 & 4
\end{array}\right) \rightarrow\left(\begin{array}{cccc|c}
1 & 1 & 1 & 1 & 4 \\
0 & -3 & 1 & -2 & -7 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

Since there is a pivot in the last column, there are no solutions. The correct answer is alternative \mathbf{A}.

Question 2.

Since $\operatorname{rk} A \leq 3$ for any value of a, the linear system $A \mathbf{x}=\mathbf{0}$ has at least one free variable. This shows that the column vectors of A are linearly dependent for all values of a. The correct answer is alternative \mathbf{D}.

Question 3.

We compute the eigenvalues of A by solving the characteristic equations $\operatorname{det}(A-\lambda I)=0$, which gives

$$
\left|\begin{array}{ccc}
2-\lambda & 1 & 0 \\
1 & 2-\lambda & 0 \\
0 & 0 & 3-\lambda
\end{array}\right|=0
$$

We compute the determinant by cofactor expansion along the third row, which gives

$$
(3-\lambda) \cdot\left|\begin{array}{cc}
2-\lambda & 1 \\
1 & 2-\lambda
\end{array}\right|=(3-\lambda)\left(\lambda^{2}-4 \lambda+3\right)
$$

Since $\lambda^{2}-4 \lambda+3=0$ has roots $\lambda=1$ and $\lambda=3$, the eigenvalue $\lambda=3$ has multiplicity two, and $\lambda=1$ has multiplicity one. The correct answer is alternative \mathbf{B}.

Question 4.

Eigenvectors for $\lambda=1$ are given by the linear system $(A-I) \mathbf{x}=\mathbf{0}$, where

$$
A-I=\left(\begin{array}{cc}
-0.44 & 0.22 \\
0.44 & -0.22
\end{array}\right)
$$

Therefore, we see that $(1,2)$ is an eigenvector in E_{1}, and all others are multiple of this vector. Multiplication by $1 / 3$ gives the state vector $(x, y)=(1 / 3,2 / 3)$. The correct answer is alternative \mathbf{C}.

Question 5.

We compute the eigenvalues of A by solving the characteristic equations $\operatorname{det}(A-\lambda I)=0$, which gives

$$
\left|\begin{array}{ccc}
2-\lambda & 0 & 1 \\
0 & s-\lambda & 2 \\
1 & 0 & 2-\lambda
\end{array}\right|=0
$$

Cofactor expansion along the middle column gives $(s-\lambda)\left(\lambda^{2}-4 \lambda+3\right)=0$, and the eigenvalues of A are $\lambda=s, 1,3$. Hence A has three distinct eigenvalues when $s \neq 1,3$. In case $s=1$ or $s=3$, the eigenvalue $\lambda=s$ has multiplicity two, and the eigenspace is the null space of the matrix

$$
s=1: \quad\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 0 & 2 \\
1 & 0 & 1
\end{array}\right), \quad s=3: \quad\left(\begin{array}{ccc}
-1 & 0 & 1 \\
0 & 0 & 2 \\
1 & 0 & -1
\end{array}\right)
$$

In each case, there is one free variable y, while $\lambda=s$ has multiplicity two. Hence A is not diagonalizable for $s=1$ or $s=3$. The correct answer is alternative \mathbf{B}.

Question 6.

The symmetric matrix of the quadratic form f is given by

$$
A=\left(\begin{array}{cccc}
3 & 1 & 4 & -1 \\
1 & 1 & 2 & 1 \\
4 & 2 & 7 & 0 \\
-1 & 1 & 0 & 4
\end{array}\right)
$$

Since $D_{1}=3, D_{2}=3-1=2, D_{3}=3(7-4)-1(7-8)+4(2-4)=2$, and cofactor expansion along the last row gives

$$
D_{4}=-(-1) \cdot\left|\begin{array}{ccc}
1 & 4 & -1 \\
1 & 2 & 1 \\
2 & 7 & 0
\end{array}\right|+1 \cdot\left|\begin{array}{ccc}
3 & 4 & -1 \\
1 & 2 & 1 \\
4 & 7 & 0
\end{array}\right|+4 \cdot D_{3}=-2-4+8=2
$$

it follows that A is positive definite. The correct answer is alternative \mathbf{A}.

Question 7.

Since f is a quadratic form, $\mathbf{x}=(0,0,0)$ is a stationary point. The symmetric matrix of f is given by

$$
A=\left(\begin{array}{lll}
3 & 1 & 4 \\
1 & 1 & 2 \\
4 & 2 & 7
\end{array}\right)
$$

Since $D_{1}=3, D_{2}=3-1=2, D_{3}=3(7-4)-1(7-8)+4(2-4)=2, A$ is positive definite. It follows that f is convex, and therefore has a global minimum point $\mathbf{x}=(0,0,0)$. The correct answer is alternative \mathbf{D}.

Question 8.

Since $|A|=\lambda_{1} \lambda_{2} \lambda_{3}=-6<0$, we either have three negative eigenvalues, or one negative and two positive eigenvalues. Since $\operatorname{tr}(A)=\lambda_{1}+\lambda_{2}+\lambda_{3}=4>0$, we cannot have three negative eigenvalues, and this means that A is indefinite since it has both positive and negative eigenvalues. The correct answer is alternative \mathbf{C}.

