$$
\begin{array}{ll}
\text { Exam } & \text { Midterm exam in GRA } 6035 \text { Mathematics } \\
\text { Date } & \text { October 08th, } 2021 \text { at } 1500-1600
\end{array}
$$

Question 1.

Consider the linear system with augmented matrix

$$
\left(\begin{array}{llll|l}
1 & 1 & 1 & 1 & 7 \\
1 & 0 & 0 & 1 & 3 \\
0 & 1 & 1 & 0 & 4
\end{array}\right)
$$

Which statement is true?

(A) The linear system is inconsistent
(B) The linear system has a unique solution
(C) The linear system has one degree of freedom
(D) The linear system has two degrees of freedom
(E) I prefer not to answer

Question 2.

Let the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ and \mathbf{v}_{4} be the column vectors of the matrix

$$
A=\left(\begin{array}{llll}
1 & 1 & 2 & 1 \\
2 & 1 & 0 & 3 \\
5 & 4 & 6 & 1
\end{array}\right)
$$

Which statement is true?

(A) $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}\right\}$ is a base of $\operatorname{Col}(A)$
(B) $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is a base of $\operatorname{Col}(A)$
(C) $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{4}\right\}$ is a base of $\operatorname{Col}(A)$
(D) $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ is a base of $\operatorname{Col}(A)$
(E) I prefer not to answer

Question 3.

Consider the matrix

$$
A=\left(\begin{array}{lll}
5 & 0 & 2 \\
0 & 3 & 0 \\
2 & 0 & 5
\end{array}\right)
$$

Which statement is true?

(A) A has three distinct eigenvalues
(B) A has an eigenvalue of multiplicity two, and another eigenvalue of multiplicity one
(C) A has an eigenvalue of multiplicity three
(D) A has one eigenvalues of multiplicity one, and no other eigenvalues
(E) I prefer not to answer

Question 4.

Consider the matrix

$$
A=\left(\begin{array}{ccc}
t+1 & t & t-1 \\
t & t & t
\end{array}\right)
$$

Which statement is true?
(A) For $t=0$, we have that $\operatorname{rk}(A)=1$, otherwise $\operatorname{rk}(A)=2$
(B) For $t=0$ and $t=1$, we have that $\operatorname{rk}(A)=1$, otherwise $\operatorname{rk}(A)=2$
(C) For $t=0, t=1$ and $t=-1$, we have that $\operatorname{rk}(A)=1$, otherwise $\operatorname{rk}(A)=2$
(D) For all values of t, we have that $\operatorname{rk}(A)=2$
(E) I prefer not to answer

Question 5.

Consider the matrix A given by

$$
A=\left(\begin{array}{lll}
3 & 0 & s \\
0 & s & 2 \\
0 & 0 & 1
\end{array}\right)
$$

Which statement is true?

(A) A is diagonalizable if and only if $s \neq 1$
(B) A is diagonalizable if and only if $s \neq 1$ and $s \neq 3$
(C) A is diagonalizable if and only if $s \neq 3$
(D) A is diagonalizable for all values of s
(E) I prefer not to answer.

Question 6.

Consider the quadratic form

$$
f(x, y, z, w)=3 x^{2}+2 x y+8 x z-2 x w+y^{2}+4 y z+2 y w+6 z^{2}
$$

Which statement is true?

(A) f is indefinite
(B) f is negative semi-definite but not negative definite
(C) f is positive semi-definite but not positive definite
(D) f is positive definite
(E) I prefer not to answer

Question 7.

Consider the function

$$
f(x, y, z)=x^{4}+y^{4}+z^{4}-4 x y z
$$

Which statement is true?
(A) The point $(x, y, z)=(1,1,1)$ is not a stationary point of f
(B) The point $(x, y, z)=(1,1,1)$ is a local minimum point of f
(C) The point $(x, y, z)=(1,1,1)$ is a local maximum point of f
(D) The point $(x, y, z)=(1,1,1)$ is a saddle point of f
(E) I prefer not to answer

Question 8.

Let A be a 4×4 matrix, such that $\mathcal{B}=\left\{\mathbf{v}_{1}\right\}$ is a base for the eigenspace E_{0} of A with

$$
\mathbf{v}_{1}=\left(\begin{array}{c}
-1 \\
-1 \\
1 \\
0
\end{array}\right)
$$

Which statement is true?

(A) $\operatorname{rk}(A)=1$
(B) $\operatorname{rk}(A)=2$
(C) $\operatorname{rk}(A)=3$
(D) $\operatorname{rk}(A)=4$
(E) I prefer not to answer

