$$
\begin{array}{ll}
\text { Solutions } & \text { Midterm exam in GRA } 6035 \text { Mathematics } \\
\text { Date } & \text { October 08th, 2021 at 1500-1600 }
\end{array}
$$

Correct answers: D-C-B-A A-A-B-C

Question 1.

We find the pivot positions in A, given by the Gaussian process

$$
\left(\begin{array}{llll|l}
1 & 1 & 1 & 1 & 7 \\
1 & 0 & 0 & 1 & 3 \\
0 & 1 & 1 & 0 & 4
\end{array}\right) \quad \rightarrow \quad\left(\begin{array}{rrrr|r}
1 & 1 & 1 & 1 & 7 \\
0 & -1 & -1 & 0 & -4 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Hence there are two degrees of freedom. The correct answer is alternative \mathbf{D}.

Question 2.

We find the pivot positions in A, given by the Gaussian process

$$
\left(\begin{array}{llll}
1 & 1 & 2 & 1 \\
2 & 1 & 0 & 3 \\
5 & 4 & 6 & 1
\end{array}\right) \quad \rightarrow \quad\left(\begin{array}{rrrr}
1 & 1 & 2 & 1 \\
0 & -1 & -4 & 1 \\
0 & 0 & 0 & -5
\end{array}\right)
$$

This shows that $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{4}\right\}$ is a base of $\operatorname{Col}(A)$. The correct answer is alternative \mathbf{C}.

Question 3.

We compute the eigenvalues of A by solving the characteristic equations $\operatorname{det}(A-\lambda I)=0$, which gives

$$
\left|\begin{array}{ccc}
5-\lambda & 0 & 2 \\
0 & 3-\lambda & 0 \\
2 & 0 & 5-\lambda
\end{array}\right|=0
$$

We compute the determinant by cofactor expansion along the first row, which gives

$$
(3-\lambda) \cdot\left|\begin{array}{cc}
5-\lambda & 2 \\
2 & 5-\lambda
\end{array}\right|=(3-\lambda)\left(\lambda^{2}-10 \lambda+21\right)
$$

Since $\lambda^{2}-10 \lambda+21=0$ has roots $\lambda=3$ and $\lambda=7$, there is one eigenvalue $\lambda=3$ of multiplicity two, and another with multiplicity one. The correct answer is alternative \mathbf{B}.

Question 4.

We compute the 2-minors of A :

$$
M_{12,12}=t, \quad M_{12,23}=t, \quad M_{12,13}=2 t
$$

Hence $\operatorname{rk} A<2$ if and only if $t=0$, and in this case $\operatorname{rk} A=1$. The correct answer is alternative \mathbf{A}.

Question 5.

Since the eigenvalues of A are $\lambda=3, s, 1$, it has three distinct eigenvalues when $s \neq 1,3$. In case $s=1$, the eigenvalue $\lambda=1$ has multiplicity two, and the eigenspace is the null space of

$$
\left(\begin{array}{lll}
2 & 0 & 1 \\
0 & 0 & 2 \\
0 & 0 & 0
\end{array}\right)
$$

Since there is one free variable, A is not diagonalizable for $s=1$. In case $s=3$, the eigenvalue $\lambda=3$ has multiplicity two, and the eigenspace is the null space of

$$
\left(\begin{array}{ccc}
0 & 0 & 3 \\
0 & 0 & 2 \\
0 & 0 & -2
\end{array}\right)
$$

Since there are two free variables, A is diagonalizable for $s=3$. The correct answer is alternative \mathbf{A}.

Question 6.

The symmetric matrix of the quadratic form $f(x, y, z, w)=3 x^{2}+2 x y+8 x z-2 x w+y^{2}+4 y z+2 y w+6 z^{2}$ is given by

$$
A=\left(\begin{array}{cccc}
3 & 1 & 4 & -1 \\
1 & 1 & 2 & 1 \\
4 & 2 & 6 & 0 \\
-1 & 1 & 0 & 0
\end{array}\right)
$$

Since the principal minor $\Delta_{2}=M_{24,24}=0-1=-1<0$, it follows that A is indefinite. The correct answer is alternative \mathbf{A}.

Question 7.

The function $f(x, y, z)=x^{4}+y^{4}+z^{4}-4 x y z$ has first order partial derivatives and first order conditions given by

$$
f_{x}^{\prime}=4 x^{3}-4 y z=0, \quad f_{y}^{\prime}=4 y^{3}-4 x z=0, \quad f_{z}^{\prime}=4 z^{3}-4 x y=0
$$

Since $(1,1,1)$ satisfy these conditions, it is a stationary point, and we have that the Hessian matrix at $(1,1,1)$ is given by

$$
H(f)=\left(\begin{array}{ccc}
12 x^{2} & -4 z & -4 y \\
-4 z & 12 y^{2} & -4 x \\
-4 y & -4 x & 12 z^{2}
\end{array}\right) \quad \Rightarrow \quad H(f)(1,1,1)=\left(\begin{array}{ccc}
12 & -4 & -4 \\
-4 & 12 & -4 \\
-4 & -4 & 12
\end{array}\right)
$$

Since this matrix has $D_{1}=12, D_{2}=128$, and $D_{3}=1024$, it is positive definite, and $(1,1,1)$ is a local minimum point for f. The correct answer is alternative \mathbf{B}.

Question 8.

Since $\operatorname{dim} E_{0}=\operatorname{dim} \operatorname{Null}(A)=1$, we have that $A \mathbf{x}=\mathbf{0}$ has one degree of freedom, and therefore the rank of A is $4-1=3$. The correct answer is alternative \mathbf{C}.

