EVALUATION GUIDELINES - Multiple choice

GRA 60352
 Mathematics

Department of Economics

Start date:	08.01 .2020	Time 09:00
Finish date:	08.01 .2020	Time 10:00

```
Solutions Midterm exam in GRA 6035 Mathematics
Date January 8th, 2020 at 0900-1000
```


Correct answers: C-C-A-D D-B-B-C

Question 1.

We find the pivot positions in A, given by the Gaussian process

$$
\left(\begin{array}{rrrr|r}
1 & -1 & 1 & 4 & 4 \\
0 & 0 & 3 & 7 & 1 \\
0 & 0 & 6 & 13 & 2
\end{array}\right) \quad \rightarrow \quad\left(\begin{array}{rrrr|r}
1 & -1 & 1 & 4 & 4 \\
0 & 0 & 3 & 7 & 1 \\
0 & 0 & 0 & -1 & 0
\end{array}\right)
$$

Hence there is one degree of freedom. The correct answer is alternative \mathbf{C}.

Question 2.

We find the pivot positions in A, given by the Gaussian process

$$
\left(\begin{array}{cccc}
1 & -1 & 1 & 4 \\
0 & 0 & 3 & 7 \\
0 & 0 & 6 & 13
\end{array}\right) \quad \rightarrow \quad\left(\begin{array}{cccc}
1 & -1 & 1 & 4 \\
0 & 0 & 3 & 7 \\
0 & 0 & 0 & -1
\end{array}\right)
$$

This shows that $\left\{\mathbf{v}_{1}, \mathbf{v}_{3}, \mathbf{v}_{4}\right\}$ are linearly independent, and \mathbf{v}_{2} is a linear combination of $\mathbf{v}_{1}, \mathbf{v}_{3}, \mathbf{v}_{4}$. The correct answer is alternative \mathbf{C}.

Question 3.

We compute the eigenvalues of A by solving the characteristic equations $\operatorname{det}(A-\lambda I)=0$, which gives

$$
\left|\begin{array}{ccc}
7-\lambda & 0 & 2 \\
0 & 2-\lambda & 0 \\
2 & 0 & 7-\lambda
\end{array}\right|=0
$$

We compute the determinant by cofactor expansion along the first row, which gives

$$
(2-\lambda) \cdot\left|\begin{array}{cc}
7-\lambda & 2 \\
2 & 7-\lambda
\end{array}\right|=(2-\lambda)\left(\lambda^{2}-14 \lambda+45\right)
$$

Since $\lambda^{2}-14 \lambda+45=0$ has solutions $\lambda=5$ and $\lambda=9$, there are three distinct eigenvalues $\lambda=2,5,9$ of multiplicity one. The correct answer is alternative \mathbf{A}.

Question 4.

We compute the minor $M_{12,24}$ of A :

$$
M_{12,24}=\left|\begin{array}{cc}
6 & -t \\
t & 1
\end{array}\right|=6+t^{2}
$$

This minor is non-zero for all values of t, hence $\operatorname{rk}(A)=2$ for all values of t. The correct answer is alternative \mathbf{D}.

Question 5.

Since the Markov chain is regular, we find all eigenvectors with $\lambda=1$. We solve the linear system $(A-I) \mathbf{v}=\mathbf{0}$ by the Gaussian process

$$
\left(\begin{array}{ccc}
-0.6 & 0.2 & 0.2 \\
0.4 & -0.4 & 0.1 \\
0.2 & 0.2 & -0.3
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
2 & 2 & -3 \\
4 & -4 & 1 \\
-6 & 2 & 2
\end{array}\right) \quad \rightarrow \quad\left(\begin{array}{ccc}
2 & 2 & -3 \\
0 & -8 & 7 \\
0 & 0 & 0
\end{array}\right)
$$

Hence z is free, $-8 y+7 z=0$ gives $y=7 z / 8$, and $2 x+2 y-3 z=0$ gives $2 x=-14 z / 8+3 z=10 z / 8$, or $x=5 z / 8$. The unique state vector in E_{1} is therefore given by $v_{1}=5 / 20=0.25, v_{2}=7 / 20=0.35$ and $v_{3}=8 / 20=0.40$ (for $z=8 / 20$). The correct answer is alternative \mathbf{D}.

Question 6.

The symmetric matrix of the quadratic form $f(x, y, z)=2 x y-2 x^{2}-y^{2}+2 x z-z^{2}$ is given by

$$
A=\left(\begin{array}{ccc}
-2 & 1 & 1 \\
1 & -1 & 0 \\
1 & 0 & -1
\end{array}\right)
$$

The leading principal minors are $D_{1}=-2, D_{2}=2-1=1, D_{3}=-1(2-1)+1(1)=0$. Since A has $\operatorname{rk} A=2$, it follows by the reduced rank criterion that A and f are negative semidefinite, but not negative definite. We could also check this by computing all principal minors. The correct answer is alternative \mathbf{B}.

Question 7.

The function $f(x, y, z)=x^{4}+y^{4}+z^{4}-4 x y$ has first order partial derivatives and first order conditions given by

$$
f_{x}^{\prime}=4 x^{3}-4 y=0, \quad f_{y}^{\prime}=4 y^{3}-4 x=0, \quad f_{z}^{\prime}=4 z^{3}=0
$$

The stationary points are given by $z=0, x^{3}=y$, and $x=y^{3}$. This gives $y=x^{3}=\left(y^{3}\right)^{3}=y^{9}$, or $y\left(1-y^{8}\right)=0$. Since $y^{8}=1$ gives $y= \pm 1$, there are three stationary point given by $y=0, y=1$ and $y=-1$; the stationary points are $(0,0,0),(1,1,0)$, and $(-1,-1,0)$. The Hessian matrix is

$$
H(f)=\left(\begin{array}{ccc}
12 x^{2} & -4 & 0 \\
-4 & 12 y^{2} & 0 \\
0 & 0 & 12 z^{2}
\end{array}\right)
$$

which gives

$$
H(f)(0,0,0)=\left(\begin{array}{ccc}
0 & -4 & 0 \\
-4 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad H(f)(\pm 1, \pm 1,0)=\left(\begin{array}{ccc}
12 & -4 & 0 \\
-4 & 12 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

We have that $H(f)(0,0,0)$ is indefinite, since $D_{2}=-16<0$, hence $(0,0,0)$ is a saddle point. We also have that $H(f)(\pm 1, \pm 1,0)$ is positive semi-definite (but not positive definite), since the principal minors are given by $D_{1}=12, D_{2}=144-16=128>0$ and $D_{3}=0$ and we can apply the reduced rank criterion since the matrix has rank two. Hence the second derivative test is inconclusive. The stationary points $(1,1,0)$ and $(-1,-1,0)$ are in fact local minimum points: To see this, note that $f(x, y)=x^{4}+y^{4}-4 x y$ has local minimum points $(1,1),(-1,-1)$ by the second derivative test and the results above. Moreover, $f(1,1,0)=-2$ and $f(1,1, z)=-2+z^{4} \geq-2$. The correct answer is alternative \mathbf{B}.

Question 8.

Since $\mathbf{v}_{3}=-3 \mathbf{v}_{1}+\mathbf{v}_{2}$, and $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ clearly are linearly independent, it follows that $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ is a base of $\operatorname{Null}(A)$. Hence $\operatorname{dim} \operatorname{Null}(A)=2$ equals the number of free variables, and rk $A=4-2=2$. The correct answer is alternative \mathbf{C}.

