

EVALUATION GUIDELINES - Multiple choice

GRA 60352 Mathematics

Department of Economics

Start date:	08.01.2020	Time 09:00
Finish date:	08.01.2020	Time 10:00

For more information about formalities, see examination paper.

Correct answers: C-C-A-D D-B-B-C

Question 1.

We find the pivot positions in A, given by the Gaussian process

/1	-1	1	4	$ 4\rangle$		(1)	-1	1	4	4	
0	0	3	7	1	\rightarrow	0	0	3	7	1	
$\begin{pmatrix} 1\\ 0\\ 0 \end{pmatrix}$	0	6	13	2		$\left(0 \right)$	0	0	$\begin{array}{c} 4\\7\\-1\end{array}$	0/	

Hence there is one degree of freedom. The correct answer is alternative C.

Question 2.

We find the pivot positions in A, given by the Gaussian process

/1	-1	1	$4 \rangle$		/1	-1	1	$4 \rangle$
0	0	3	7	\rightarrow	0	0	3	$\begin{pmatrix} 4 \\ 7 \end{pmatrix}$
0	0	6	$\begin{pmatrix} 4 \\ 7 \\ 13 \end{pmatrix}$		$\left(0 \right)$	0	0	-1

This shows that $\{\mathbf{v}_1, \mathbf{v}_3, \mathbf{v}_4\}$ are linearly independent, and \mathbf{v}_2 is a linear combination of $\mathbf{v}_1, \mathbf{v}_3, \mathbf{v}_4$. The correct answer is alternative **C**.

Question 3.

We compute the eigenvalues of A by solving the characteristic equations $det(A - \lambda I) = 0$, which gives

$$\begin{vmatrix} 7 - \lambda & 0 & 2 \\ 0 & 2 - \lambda & 0 \\ 2 & 0 & 7 - \lambda \end{vmatrix} = 0$$

We compute the determinant by cofactor expansion along the first row, which gives

$$(2-\lambda) \cdot \begin{vmatrix} 7-\lambda & 2\\ 2 & 7-\lambda \end{vmatrix} = (2-\lambda)(\lambda^2 - 14\lambda + 45)$$

Since $\lambda^2 - 14\lambda + 45 = 0$ has solutions $\lambda = 5$ and $\lambda = 9$, there are three distinct eigenvalues $\lambda = 2, 5, 9$ of multiplicity one. The correct answer is alternative **A**.

Question 4.

We compute the minor $M_{12,24}$ of A:

$$M_{12,24} = \begin{vmatrix} 6 & -t \\ t & 1 \end{vmatrix} = 6 + t^2$$

This minor is non-zero for all values of t, hence rk(A) = 2 for all values of t. The correct answer is alternative **D**.

Question 5.

Since the Markov chain is regular, we find all eigenvectors with $\lambda = 1$. We solve the linear system $(A - I)\mathbf{v} = \mathbf{0}$ by the Gaussian process

$$\begin{pmatrix} -0.6 & 0.2 & 0.2 \\ 0.4 & -0.4 & 0.1 \\ 0.2 & 0.2 & -0.3 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & 2 & -3 \\ 4 & -4 & 1 \\ -6 & 2 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & 2 & -3 \\ 0 & -8 & 7 \\ 0 & 0 & 0 \end{pmatrix}$$

Hence z is free, -8y + 7z = 0 gives y = 7z/8, and 2x + 2y - 3z = 0 gives 2x = -14z/8 + 3z = 10z/8, or x = 5z/8. The unique state vector in E_1 is therefore given by $v_1 = 5/20 = 0.25$, $v_2 = 7/20 = 0.35$ and $v_3 = 8/20 = 0.40$ (for z = 8/20). The correct answer is alternative **D**.

Question 6.

The symmetric matrix of the quadratic form $f(x, y, z) = 2xy - 2x^2 - y^2 + 2xz - z^2$ is given by

$$A = \begin{pmatrix} -2 & 1 & 1\\ 1 & -1 & 0\\ 1 & 0 & -1 \end{pmatrix}$$

The leading principal minors are $D_1 = -2$, $D_2 = 2 - 1 = 1$, $D_3 = -1(2 - 1) + 1(1) = 0$. Since A has $\operatorname{rk} A = 2$, it follows by the reduced rank criterion that A and f are negative semidefinite, but not negative definite. We could also check this by computing all principal minors. The correct answer is alternative **B**.

Question 7.

The function $f(x, y, z) = x^4 + y^4 + z^4 - 4xy$ has first order partial derivatives and first order conditions given by

$$f'_x = 4x^3 - 4y = 0, \quad f'_y = 4y^3 - 4x = 0, \quad f'_z = 4z^3 = 0$$

The stationary points are given by z = 0, $x^3 = y$, and $x = y^3$. This gives $y = x^3 = (y^3)^3 = y^9$, or $y(1-y^8) = 0$. Since $y^8 = 1$ gives $y = \pm 1$, there are three stationary point given by y = 0, y = 1 and y = -1; the stationary points are (0, 0, 0), (1, 1, 0), and (-1, -1, 0). The Hessian matrix is

$$H(f) = \begin{pmatrix} 12x^2 & -4 & 0\\ -4 & 12y^2 & 0\\ 0 & 0 & 12z^2 \end{pmatrix}$$

which gives

$$H(f)(0,0,0) = \begin{pmatrix} 0 & -4 & 0 \\ -4 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad H(f)(\pm 1, \pm 1, 0) = \begin{pmatrix} 12 & -4 & 0 \\ -4 & 12 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

We have that H(f)(0,0,0) is indefinite, since $D_2 = -16 < 0$, hence (0,0,0) is a saddle point. We also have that $H(f)(\pm 1, \pm 1, 0)$ is positive semi-definite (but not positive definite), since the principal minors are given by $D_1 = 12$, $D_2 = 144 - 16 = 128 > 0$ and $D_3 = 0$ and we can apply the reduced rank criterion since the matrix has rank two. Hence the second derivative test is inconclusive. The stationary points (1, 1, 0) and (-1, -1, 0) are in fact local minimum points: To see this, note that $f(x, y) = x^4 + y^4 - 4xy$ has local minimum points (1, 1), (-1, -1) by the second derivative test and the results above. Moreover, f(1, 1, 0) = -2 and $f(1, 1, z) = -2 + z^4 \ge -2$. The correct answer is alternative **B**.

Question 8.

Since $\mathbf{v}_3 = -3\mathbf{v}_1 + \mathbf{v}_2$, and $\{\mathbf{v}_1, \mathbf{v}_2\}$ clearly are linearly independent, it follows that $\{\mathbf{v}_1, \mathbf{v}_2\}$ is a base of Null(A). Hence dim Null(A) = 2 equals the number of free variables, and rk A = 4 - 2 = 2. The correct answer is alternative **C**.