EVALUATION GUIDELINES - Multiple choice

GRA 60352
 Mathematics

Department of Economics

Start date:	11.10 .2019	Time 15:00
Finish date:	11.10 .2019	Time 16:00

```
Solutions Midterm exam in GRA 6035 Mathematics
Date October 11th, 2019 at 1500-1600
```


Correct answers: C-C-D-D A-B-A-D

Question 1.

We find the pivot positions in A, given by the Gaussian process

$$
\left(\begin{array}{rrrr|r}
1 & 4 & 3 & 5 & 7 \\
0 & 0 & 0 & 5 & 13 \\
0 & 4 & 0 & 1 & 5
\end{array}\right) \quad \rightarrow \quad\left(\begin{array}{rrrr|r}
1 & 4 & 3 & 5 & 7 \\
0 & 4 & 0 & 1 & 5 \\
0 & 0 & 0 & 5 & 13
\end{array}\right)
$$

Hence there is one degree of freedom. The correct answer is alternative \mathbf{C}.

Question 2.

We find the pivot positions in A, given by the Gaussian process

$$
\left(\begin{array}{rrrr|r}
1 & 4 & 3 & 5 & 7 \\
0 & 0 & 0 & 5 & 13 \\
0 & 4 & 0 & 1 & 5
\end{array}\right) \quad \rightarrow \quad\left(\begin{array}{rrrr|r}
1 & 4 & 3 & 5 & 7 \\
0 & 4 & 0 & 1 & 5 \\
0 & 0 & 0 & 5 & 13
\end{array}\right)
$$

This shows that $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{4}\right\}$ are linearly independent, and \mathbf{v}_{3} is a linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{4}$. The correct answer is alternative \mathbf{C}.

Question 3.

We compute the eigenvalues of A by solving the characteristic equations $\operatorname{det}(A-\lambda I)=0$, which gives

$$
\left|\begin{array}{ccc}
7-\lambda & 0 & 2 \\
0 & 2-\lambda & 0 \\
-2 & 0 & 7-\lambda
\end{array}\right|=0
$$

We compute the determinant by cofactor expansion along the first row, which gives

$$
(2-\lambda) \cdot\left|\begin{array}{cc}
7-\lambda & 2 \\
-2 & 7-\lambda
\end{array}\right|=(2-\lambda)\left(\lambda^{2}-14 \lambda+53\right)
$$

Since $\lambda^{2}-14 \lambda+53=0$ has no (real) solutions, there is only one eigenvalue $\lambda=2$ of multiplicity one. The correct answer is alternative \mathbf{D}.

Question 4.

We compute the minor $M_{12,14}$ of A :

$$
M_{12,14}=\left|\begin{array}{cc}
t & 1 \\
-1 & t
\end{array}\right|=t^{2}+1
$$

This minor is non-zero for all values of t, hence $\operatorname{rk}(A)=2$ for all values of t. The correct answer is alternative \mathbf{D}.

Question 5.

Since the Markov chain is regular, we find all eigenvectors with $\lambda=1$. We solve the linear system $(A-I) \mathbf{v}=\mathbf{0}$ by the Gaussian process

$$
\left(\begin{array}{ccc}
-0.6 & 0.2 & 0.1 \\
0.4 & -0.4 & 0.1 \\
0.2 & 0.2 & -0.2
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
2 & 2 & -2 \\
4 & -4 & 1 \\
-6 & 2 & 1
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
2 & 2 & -2 \\
0 & -8 & 5 \\
0 & 0 & 0
\end{array}\right)
$$

Hence z is free, $-8 y+5 z=0$ gives $y=5 z / 8$, and $2 x+2 y-2 z=0$ gives $x=-5 z / 8+z=3 z / 8$. The unique state vector in E_{1} are therefore given by $v_{1}=3 / 16, v_{2}=5 / 16$ and $v_{3}=8 / 16$ (for $z=1 / 2$). The correct answer is alternative \mathbf{A}.

Question 6.

The symmetric matrix of the quadratic form $f(x, y, z)=2 x y-x^{2}-2 y^{2}+2 y z-z^{2}$ is given by

$$
A=\left(\begin{array}{ccc}
-1 & 1 & 0 \\
1 & -2 & 1 \\
0 & 1 & -1
\end{array}\right)
$$

The leading principal minors are $D_{1}=-1, D_{2}=2-1=1, D_{3}=-1(2-1)-1(-1)=0$. Since A has $\operatorname{rk} A=2$, it follows by the reduced rank criterion that A and f are negative semidefinite, but not negative definite. We could also check this by computing all principal minors. The correct answer is alternative \mathbf{B}.

Question 7.

The function $f(x, y, z)=x^{3}+y^{3}+z^{3}-3 x z$ has first order partial derivatives and first order conditions given by

$$
f_{x}^{\prime}=3 x^{2}-3 z=0, \quad f_{y}^{\prime}=3 y^{2}=0, \quad f_{z}^{\prime}=3 z^{2}-3 x=0
$$

The stationary points are given by $z=x^{2}, y=0$, and $x=z^{2}$. This gives $z=x^{2}=\left(z^{2}\right)^{2}=z^{4}$, or $z\left(1-z^{3}\right)=0$. There are two stationary point given by $z=0$ and $z=1$, which are $(0,0,0)$ and $(1,0,1)$. The Hessian matrix is

$$
H(f)=\left(\begin{array}{ccc}
6 x & 0 & -3 \\
0 & 6 y & 0 \\
-3 & 0 & 6 z
\end{array}\right) \quad \Rightarrow \quad H(f)(0,0,0)=\left(\begin{array}{ccc}
0 & 0 & -3 \\
0 & 0 & 0 \\
-3 & 0 & 0
\end{array}\right), \quad H(f)(1,0,1)=\left(\begin{array}{ccc}
6 & 0 & -3 \\
0 & 0 & 0 \\
-3 & 0 & 6
\end{array}\right)
$$

We have that $H(f)(0,0,0)$ is indefinite, since the principal 2 -minor $M_{13,13}=-9<0$, so $(0,0,0)$ is a saddle point. We also have that $H(f)(1,0,1)$ is positive semi-definite (but not positive definite), since the principal minors are given by $\Delta_{1}=6,0,6, \Delta_{2}=0,0,27$ and $\Delta_{3}=0$. Hence the second derivative test is inconclusive. The stationary point $(1,0,1)$ is a saddle point, since $f(1,0,1)=-1$ and $f(1, y, 1)=-1+y^{3}$ can both be less than and more than -1 for values of y close to zero (a small negative value for y gives $f<-1$ and a small positive value for y gives $f>-1$). The correct answer is alternative \mathbf{A}.

Question 8.

Since $\operatorname{dim} \operatorname{Null}(A)=2$ equals the number of free variables, we have that $A \mathbf{x}=\mathbf{0}$ has two degrees of freedom. The correct answer is alternative \mathbf{D}.

