This exam has 8 questions

Question 1.

A 4×6 linear system $A \cdot \mathbf{x}=\mathbf{b}$ has 3 degrees of freedom. Which statement is true?
(a) $\operatorname{rk}(A)=4$
(b) $\operatorname{rk}(A)=3$
(c) $\operatorname{rk}(A)=2$
(d) $\operatorname{rk}(A)=1$
(e) I prefer not to answer.

Question 2.

Consider the vectors \mathbf{v}_{1} and \mathbf{v}_{2} given by

$$
\mathbf{v}_{1}=\left(\begin{array}{l}
2 \\
t \\
3
\end{array}\right), \quad \mathbf{v}_{2}=\left(\begin{array}{l}
3 \\
6 \\
t
\end{array}\right)
$$

Which statement is true?
(a) The vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ are linearly independent for all t
(b) The vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ are linearly dependent for all t
(c) The vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ are linearly dependent when $t=4$, and linearly independent otherwise
(d) The vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ are linearly independent when $t=4$, and linearly dependent otherwise
(e) I prefer not to answer.

Question 3.

Consider the matrix

$$
A=\left(\begin{array}{cccc}
1 & 3 & -1 & 4 \\
1 & 1 & 1 & 2 \\
t & -1 & 5 & 3
\end{array}\right)
$$

Which statement is true?
(a) For all values of t, we have that $\operatorname{rk}(A)=3$
(b) There is one value of t such that $\operatorname{rk}(A)=2$, otherwise $\operatorname{rk}(A)=3$
(c) There is one value of t such that $\operatorname{rk}(A)=3$, otherwise $\operatorname{rk}(A)=2$
(d) For all values of t, we have that $\operatorname{rk}(A)=2$
(e) I prefer not to answer.

Question 4.

Consider the matrix

$$
A=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 3 & 2 \\
0 & 2 & 3
\end{array}\right)
$$

Which statement is true?
(a) A has three distinct eigenvalues
(b) A has an eigenvalue of multiplicity two, and another eigenvalue of multiplicity one
(c) A has an eigenvalue of multiplicity three
(d) A has one eigenvalues of multiplicity one, and no other eigenvalues
(e) I prefer not to answer.

Question 5.

Consider the matrix A given by

$$
A=\left(\begin{array}{ccc}
1 & 0 & -s \\
0 & 1 & 0 \\
s & 0 & 1
\end{array}\right)
$$

Which statement is true?

(a) A is diagonalizable for all s
(b) A is diagonalizable exactly when $s \neq 1$
(c) A is not diagonalizable for any value of s
(d) A is diagonalizable exactly when $s=0$
(e) I prefer not to answer.

Question 6.

A 3×4 linear system $A \cdot \mathbf{x}=\mathbf{b}$ has infinitely many solutions and 1 degree of freedom. Which statement is true?
(a) $\operatorname{dim} \operatorname{Null}(A)=1$
(b) $\operatorname{dim} \operatorname{Null}(A)=2$
(c) $\operatorname{dim} \operatorname{Null}(A)=3$
(d) $\operatorname{dim} \operatorname{Null}(A)=0$
(e) I prefer not to answer.

Question 7.

Consider the quadratic form

$$
f(x, y, z, w)=5 x^{2}+4 x y+y^{2}+3 z^{2}+2 z w+w^{2}
$$

Which statement is true?

(a) f is positive semi-definite but not positive definite
(b) f is positive definite
(c) f is negative definite
(d) f is indefinite
(e) I prefer not to answer.

Question 8.

Consider the function $f(x, y, z)=x^{3}+y^{3}+z^{3}-3(x+y+z)$. Which statement is true?
(a) f has a local maximum point, but not a local minimum point
(b) f has a local minimum point, but not a local maximum point
(c) f has a local maximum point and a local minimum point, but no saddle points
(d) f has a local maximum point, a local minimum point, and one or more saddle points
(e) I prefer not to answer.

