| Solutions | Midterm exam in GRA 6035 Mathematics |
| :--- | :--- |
| Date | January 07th, 2019 at 0900-1000 |

## Correct answers: B-A-A-B D-A-B-D

## Question 1.

Since $6-\operatorname{rk}(A)=3$, we have that $\operatorname{rk}(A)=3$. The correct answer is alternative $\mathbf{B}$.

## Question 2.

We form the matrix $A$ with the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}$ as columns, and compute its minors:

$$
A=\left(\begin{array}{ll}
2 & 3 \\
t & 6 \\
3 & t
\end{array}\right)
$$

We have that $M_{12,12}=12-3 t$, hence $\operatorname{rk}(A)=2$ if $t \neq 4$. If $t=4$, then $M_{13,12}=2 t-9=8-9 \neq 0$, hence $\operatorname{rk}(A)=2$ also if $t=4$. It follows that the vectors are linearly independent for all values of $t$. The correct answer is alternative $\mathbf{A}$.

## Question 3.

We compute the minor $M_{123,123}$ of $A$ using cofactor expansion along the last column:

$$
M_{123,123}=\left|\begin{array}{ccc}
1 & 3 & -1 \\
1 & 1 & 1 \\
t & -1 & 5
\end{array}\right|=1(5+1)-3(5-t)-1(-1-t)=4 t-8
$$

This means that $\operatorname{rk}(A)=3$ for $t \neq 2$. When $t=2$, we compute the rank by Gaussian elimination

$$
A=\left(\begin{array}{cccc}
1 & 3 & -1 & 4 \\
1 & 1 & 1 & 2 \\
2 & -1 & 5 & 3
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
1 & 3 & -1 & 4 \\
0 & -2 & 2 & -2 \\
0 & -7 & 7 & -5
\end{array}\right) \quad \rightarrow\left(\begin{array}{cccc}
1 & 3 & -1 & 4 \\
0 & -2 & 2 & -2 \\
0 & 0 & 0 & 2
\end{array}\right)
$$

and see that $\operatorname{rk}(A)=3$ also when $t=2$. Therefore, $\operatorname{rk}(A)=3$ for all values of $t$. The correct answer is alternative $\mathbf{A}$.

## Question 4.

We compute the eigenvalues of $A$ by solving the characteristic equations $\operatorname{det}(A-\lambda I)=0$, which gives

$$
\left|\begin{array}{ccc}
1-\lambda & 0 & 0 \\
0 & 3-\lambda & 2 \\
0 & 2 & 3-\lambda
\end{array}\right|=0
$$

We compute the determinant by cofactor expansion along the first row, which gives

$$
(1-\lambda) \cdot\left|\begin{array}{cc}
3-\lambda & 2 \\
2 & 3-\lambda
\end{array}\right|=(1-\lambda)\left(\lambda^{2}-6 \lambda+5\right)=(1-\lambda)(\lambda-1)(\lambda-5)=0
$$

Therefore, $\lambda=1$ is an eigenvalue of multiplicity two, and $\lambda=5$ is an eigenvalue of multiplicity one. The correct answer is alternative $\mathbf{B}$.

## Question 5.

We compute the eigenvalues of $A$ by solving the characteristic equations $\operatorname{det}(A-\lambda I)=0$, which gives

$$
\left|\begin{array}{ccc}
1-\lambda & 0 & -s \\
0 & 1-\lambda & 0 \\
s & 0 & 1-\lambda
\end{array}\right|=0
$$

We compute the determinant by cofactor expansion along the middle row, which gives

$$
(1-\lambda) \cdot\left|\begin{array}{cc}
1-\lambda & -s \\
s & 1-\lambda
\end{array}\right|=(1-\lambda)\left((1-\lambda)^{2}+s^{2}\right)=0
$$

If $s \neq 0$, then $(1-\lambda)^{2}+s^{2}>0$, and $\lambda=1$ is the only eigenvalue of $A$, of multiplicity one, and $A$ is not diagonalizable. If $s=0$, then $A$ is diagonal and therefore diagonalizable. The correct answer is alternative $\mathbf{D}$.

## Question 6.

Since $\operatorname{dim} \operatorname{Null}(A)$ equals the number of free variables, we have that $\operatorname{dim} \operatorname{Null}(A)=1$. The correct answer is alternative $\mathbf{A}$.

## Question 7.

The symmetric matrix of the quadratic form $f(x, y, z, w)=5 x^{2}+4 x y+y^{2}+3 z^{2}+2 z w+w^{2}$ is given by

$$
A=\left(\begin{array}{llll}
5 & 2 & 0 & 0 \\
2 & 1 & 0 & 0 \\
0 & 0 & 3 & 1 \\
0 & 0 & 1 & 1
\end{array}\right)
$$

The leading principal minors are $D_{1}=5, D_{2}=5-4=1, D_{3}=3 D_{2}=3$ and

$$
D_{4}=5 \cdot 1(3-1)-2 \cdot 2(3-1)=(5-4)(3-1)=2
$$

(we use cofactor expansion along the first row). Since $D_{1}, D_{2}>0, D_{3}>0$ and $D_{4}>0$, we have that $A$ is positive definite. The correct answer is alternative $\mathbf{B}$.

## Question 8.

The function $f(x, y, z)=x^{3}+y^{3}+z^{3}-3(x+y+z)$ has first order partial derivatives and first order conditions given by

$$
f_{x}^{\prime}=3 x^{2}-3=0, \quad f_{y}^{\prime}=3 y^{2}-3=0, \quad f_{z}^{\prime}=3 z^{2}-3=0
$$

This gives stationary points with $x= \pm 1, y= \pm 1, z= \pm 1$, in total $2^{3}=8$ stationary points. The Hessian matrix of $f$ is given by

$$
H(f)=\left(\begin{array}{ccc}
6 x & 0 & 0 \\
0 & 6 y & 0 \\
0 & 0 & 6 z
\end{array}\right)
$$

This means that $H(f)(1,1,1)$ is positive definite, $H(f)(-1,-1,-1)$ is negative definite, and $H(f)(x, y, z)$ is indefinite at all other stationary points. Therefore, $f$ has one local maximum, one local minimum and six saddle points. The correct answer is alternative $\mathbf{D}$.

