| Exam | Final exam in GRA 6035 Mathematics |
| :--- | :--- |
| Date | January 9th 2023 at $0900-1200$ |

## You must give reasons for your answers.

## Question 1.

We consider the matrix $A$ and the vector $\mathbf{v}$ given by

$$
A=\left(\begin{array}{ccc}
12 & 6 & -3 \\
6 & 3 & 6 \\
-3 & 6 & -4
\end{array}\right), \quad \mathbf{v}=\left(\begin{array}{c}
1 \\
-2 \\
a
\end{array}\right)
$$

(a) (6p) Compute the determinant of $A$.
(b) (6p) Determine the dimension of the column space of $A$.
(c) $(6 \mathbf{p})$ Determine the values of $a$ and $\lambda$ such that $\mathbf{v}$ is in the eigenspace $E_{\lambda}$ of $A$.
(d) $(\mathbf{6 p})$ Find all eigenvalues of $A$.

## Question 2.

(a) (6p) Solve the difference equation: $y_{t+2}-2 y_{t+1}-8 y_{t}=-9 t$
(b) (6p) Solve the differential equation: $y^{\prime}=2 t-4 t y$
(c) (6p) Solve the system of differential equations: $u^{\prime}=v, v^{\prime}=8 u+2 v+24$
(d) $(6 \mathbf{p})$ Find the particular solution of $t y^{\prime}=e^{-y}$ for $t>0$ satisfying the initial condition $y(1)=0$.

## Question 3.

Let $f$ be the quadratic form given by $f(x, y, z, w)=2 x^{2}-2 x y+6 x z+y^{2}+10 z^{2}+2 z w+w^{2}$, and consider the Lagrange problem

$$
\min f(x, y, z, w)=2 x^{2}-2 x y+6 x z+y^{2}+10 z^{2}+2 z w+w^{2} \text { when } 3 x+y+8 z-4 w=33
$$

(a) (6p) Determine the definiteness of the quadratic form $f$.
(b) $(\mathbf{6 p})$ Find all points $(x, y, z, w ; \lambda)$ with $w=-4$ that satisfy the Lagrange conditions.
(c) $(6 \mathbf{p})$ Find the minimum value in the Lagrange problem, if it exists.
(d) $(6 \mathbf{p})$ Find the range of the function $p(x, y, z, w)=u^{2}-4 u+7$, where $u=f(x, y, z, w)$.

