Solutions	Final exam in GRA 6035 Mathematics
Date	January 9th 2023 at 0900-1200

Question 1.

(a) We use cofactor expansion along the first row to find the determinant of A :

$$
\left|\begin{array}{ccc}
12 & 6 & -3 \\
6 & 3 & 6 \\
-3 & 6 & -4
\end{array}\right|=12(-12-36)-6(-24+18)-3(36+9)=-576+36-135=-675
$$

(b) Since A is a square matrix with determinant $|A| \neq 0$, it follows that A has maximal rank. Hence $\operatorname{rk}(A)=3$, and $\operatorname{dim} \operatorname{Col}(A)=\operatorname{rk}(A)=3$.
(c) We determine when \mathbf{v} is an eigenvector of A by computing $A \mathbf{v}$ and compare it with $\lambda \mathbf{v}$:

$$
A \mathbf{v}=\left(\begin{array}{ccc}
12 & 6 & -3 \\
6 & 3 & 6 \\
-3 & 6 & -4
\end{array}\right) \cdot\left(\begin{array}{c}
1 \\
-2 \\
a
\end{array}\right)=\left(\begin{array}{c}
-3 a \\
6 a \\
-15-4 a
\end{array}\right), \quad \lambda \mathbf{v}=\lambda \cdot\left(\begin{array}{c}
1 \\
-2 \\
a
\end{array}\right)=\left(\begin{array}{c}
\lambda \\
-2 \lambda \\
a \lambda
\end{array}\right)
$$

We see that $A \mathbf{v}=\lambda \mathbf{v}$ if and only if $\lambda=-3 a,-2 \lambda=6 a$, and $a \lambda=-15-4 a$. We substitute $\lambda=-3 a$ in the last equation, and get $a(-3 a)=-15-4 a$, or $3 a^{2}-4 a-15=0$. This gives

$$
a=\frac{4 \pm \sqrt{(-4)^{2}-4(3)(-15)}}{2(3)}=\frac{4 \pm \sqrt{196}}{6}=\frac{4 \pm 14}{6}
$$

We get $a=3$ and $a=-10 / 6=-5 / 3$ as solutions to the quadratic equation. Hence \mathbf{v} is in E_{λ} if and only if $a=3, \lambda=-9$ or $a=-5 / 3, \lambda=5$.
(d) Since A is a symmetric 3×3 matrix, it has three eigenvalue counted with multiplicities. We know from (c) that $\lambda_{1}=-9$ and $\lambda_{2}=5$ are eigenvalues of A. Since $\operatorname{tr}(A)=12+3-4=11$, it follows that

$$
\operatorname{tr}(A)=11=\lambda_{1}+\lambda_{2}+\lambda_{3}=-9+5+\lambda_{3} \quad \Rightarrow \quad \lambda_{3}=11-(-9+5)=15
$$

It follows that the eigenvalues of A are $\lambda_{1}=-9, \lambda_{2}=5$, and $\lambda_{3}=15$.

Question 2.

(a) The characteristic equation of the homogeneous difference equation $y_{t+2}-2 y_{t+1}-8 y_{t}=0$ is $r^{2}-2 r-8=0$, which gives

$$
r=\frac{2 \pm \sqrt{(-2)^{2}-4(-8)}}{2}=\frac{2 \pm \sqrt{36}}{2}=\frac{2 \pm 6}{2}
$$

Hence there are two distinct characteristic roots $r_{1}=4$ and $r_{2}=-2$, and the general homogeneous solution is

$$
y_{t}^{h}=C_{1} \cdot 4^{t}+C_{2} \cdot(-2)^{t}
$$

To find a particular solution of $y_{t+2}-2 y_{t+1}-8 y_{t}=-9 t$, we use the method of undetermined coefficients with $y_{t}=A t+B$, which gives $y_{t+1}=A(t+1)+B$ and $y_{t+2}=A(t+2)+B$. We get $(A t+2 A+B)-2(A t+A+B)-8(A t+B)=-9 t$ when we substitute this into the difference equation, and this implies that $(-9 A) t+(-9 B)=-9 t$, or $A=1$ and $B=1$ by comparing coefficients. Hence $y_{t}^{p}=t$, and the general solution of the difference equation is

$$
y_{t}=y_{t}^{h}+y_{t}^{p}=C_{1} \cdot 4^{t}+C_{2} \cdot(-2)^{t}+t
$$

(b) The differential equation $y^{\prime}=2 t-4 t y$ can be written as $y^{\prime}=2 t(1-2 y)$ and solved by separation of variables:

$$
\frac{1}{1-2 y} y^{\prime}=2 t \quad \Rightarrow \quad \int \frac{1}{1-2 y} \mathrm{~d} y=\int 2 t \mathrm{~d} t \quad \Rightarrow \quad-\frac{1}{2} \ln |1-2 y|=t^{2}+C
$$

This gives $\ln |1-2 y|=-2 t^{2}-2 C$, or $|1-2 y|=e^{-2 t^{2}-2 C}$, hence $1-2 y= \pm e^{-2 t^{2}-2 C}=K e^{-2 t^{2}}$, or $2 y=1-K e^{-2 t^{2}}$. This implies that the general solution is

$$
y=\frac{1}{2}-\frac{K}{2} e^{-2 t^{2}}
$$

Alternatively, the differential equation can be solved using integrating factor by writing it in the standard form $y^{\prime}+4 t y=2 t$ of a first order linear differential equation.
(c) We write $\mathbf{y}=(u, v)$ such that the system of differential equations can be written $\mathbf{y}^{\prime}=A \mathbf{y}+\mathbf{b}$ with

$$
A=\left(\begin{array}{ll}
0 & 1 \\
8 & 2
\end{array}\right), \quad \mathbf{b}=\binom{0}{24}
$$

The equilibrium state of the system is given by $\mathbf{A} \mathbf{+} \mathbf{b}=\mathbf{0}$, hence $v=0$ and $8 u+2 v+24=0$. The solution is $v=0$ and $8 u=-24$, or $u=-3$, hence $\mathbf{y}_{e}=(-3,0)$ is the equilibrium state. The eigenvalues of A are given by the characteristic equation $\lambda^{2}-2 \lambda-8=0$, and this gives $\lambda_{1}=4$ and $\lambda_{2}=-2$. To find a base $\left\{\mathbf{v}_{i}\right\}$ for $E_{\lambda_{i}}$ in each case, we use the Gaussian processes

$$
E_{4}:\left(\begin{array}{cc}
-4 & 1 \\
8 & -2
\end{array}\right) \rightarrow\left(\begin{array}{cc}
-4 & 1 \\
0 & 0
\end{array}\right) \quad E_{-2}:\left(\begin{array}{ll}
2 & 1 \\
8 & 4
\end{array}\right) \rightarrow\left(\begin{array}{ll}
2 & 1 \\
0 & 0
\end{array}\right)
$$

and back substitution, and find base vectors $\mathbf{v}_{1}=(1,4)$ and $\mathbf{v}_{2}=(1,-2)$ for the two eigenspaces. Hence the general solution of the system of differential equations is

$$
\mathbf{y}=\binom{u}{v}=C_{1}\binom{1}{4} \cdot e^{4 t}+C_{2}\binom{1}{-2} \cdot e^{-2 t}+\binom{-3}{0}
$$

(d) The differential equation $t y^{\prime}=e^{-y}$ can be written as $y^{\prime}=e^{-y} \cdot 1 / t$ and solved by separation of variables:

$$
e^{y} y^{\prime}=\frac{1}{t} \quad \Rightarrow \quad \int e^{y} \mathrm{~d} y=\int \frac{1}{t} \mathrm{~d} t \quad \Rightarrow \quad e^{y}=\ln (t)+C
$$

We use $\ln |t|=\ln (t)$ since we assume that $t>0$. The initial condition $y(1)=0$ means that $t=1, y=0$ will be a solution, hence $e^{0}=\ln (1)+C$, or $C=1$. This gives $e^{y}=\ln (t)+1$, and the particular solution with $y(1)=0$ is given by $y=\ln (\ln (t)+1)$.

Question 3.

(a) To determine the definiteness of the quadratic form f, we write down its symmetric matrix A :

$$
A=\left(\begin{array}{cccc}
2 & -1 & 3 & 0 \\
-1 & 1 & 0 & 0 \\
3 & 0 & 10 & 1 \\
0 & 0 & 1 & 1
\end{array}\right)
$$

Its leading principal minors are $D_{1}=2, D_{2}=2-1=1, D_{3}=3(-3)+10 D_{2}=10-9=1$, and $D_{4}=|A|$ is given by

$$
D_{4}=-1\left|\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 1 & 0 \\
3 & 0 & 1
\end{array}\right|+1 \cdot D_{3}=-1(1)(2-1)+1=0
$$

Since $D_{1}, D_{2}, D_{3}>0$ and $D_{4}=0$, we have that $\operatorname{rk}(A)=3$ and A is positive semidefinite by the RRC. Hence f is a positive semidefinite quadratic form.
(b) The Lagrangian is $\mathcal{L}=\mathbf{x}^{T} A \mathbf{x}-\lambda(B \mathbf{x}-33)$, where A is the symmetric matrix of f and $B=\left(\begin{array}{llll}3 & 1 & 8 & -4\end{array}\right)$. The Lagrange conditions are the first order conditions, which can be written $2 A \mathbf{x}-\lambda B^{T}=\mathbf{0}$ in matrix form, and the constraint $B \mathbf{x}=33$. We write the FOC's as $A \mathbf{x}=(\lambda / 2) B^{T}$ and write $t=\lambda / 2$ for simplicity. This gives a linear system with the following augmented matrix, and we solve it using Gaussian elimination:

$$
\left(\begin{array}{cccc|c}
2 & -1 & 3 & 0 & 3 t \\
-1 & 1 & 0 & 0 & t \\
3 & 0 & 10 & 1 & 8 t \\
0 & 0 & 1 & 1 & -4 t
\end{array}\right) \rightarrow\left(\begin{array}{cccc|c}
-1 & 1 & 0 & 0 & t \\
0 & 1 & 3 & 0 & 5 t \\
0 & 3 & 10 & 1 & 11 t \\
0 & 0 & 1 & 1 & -4 t
\end{array}\right) \rightarrow\left(\begin{array}{cccc|c}
-1 & 1 & 0 & 0 & t \\
0 & 1 & 3 & 0 & 5 t \\
0 & 0 & 1 & 1 & -4 t \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Hence w is a free variable, $z=-4 t-w, y=-3 z+5 t=17 t+3 w$, and $x=y-t=16 t+3 w$ by back substitution. With $w=-4$, we get the solution

$$
(x, y, z, w)=(16 t-12,17 t-12,-4 t+4,-4)
$$

of the FOC's. When we substitute this into the constraint, we find that

$$
3(16 t-12)+(17 t-12)+8(-4 t+4)-4(-4)=33 t=33
$$

which gives $t=1$, and this implies that $\lambda / 2=1$, or $\lambda=2$. We conclude that there is a unique candidate point with $w=-4$ that satisfies the Lagrange conditions:

$$
(x, y, z, w ; \lambda)=(4,5,0,-4 ; 2)
$$

(c) We apply the SOC to the candidate point $(x, y, z, w ; \lambda)=(4,5,0,-4 ; 2)$ found in (b), and consider the function

$$
h(x, y, z, w)=\mathcal{L}(x, y, z, w ; 2)=\mathbf{x}^{T} A \mathbf{x}-2(B \mathbf{x}-33)
$$

Since the Hessian $H(h)=2 A$ and A is positive semidefinite by (a), it follows that h is convex. Therefore, the candidate point is a minimum in the Lagrange problem by the SOC, and $f_{\text {min }}=f(4,5,0,-4)=2(4)^{2}-2(4)(5)+(5)^{2}+(-4)^{2}=33$.
(d) We think of $p(x, y, z, w)$ as a composite function $p(u)=u^{2}-4 u+7$, with inner function or kernel $u=f(x, y, z, w)$. The inner function is convex with minimum value $u_{\min }=f(0,0,0,0)=0$ since f is a positive semidefinite quadratic form. The outer function $p(u)=u^{2}-4 u+7$ has derivative $p^{\prime}(u)=2 u-4=2(u-2)$, hence it is decreasing for $0 \leq u \leq 2$ and increasing for $u \geq 2$, with $p(u) \rightarrow \infty$ when $u \rightarrow \infty$. Hence p has minimum value $p_{\min }=p(2)=3$, and no maximum value. The range of p is $V_{p}=[3, \infty)$.

